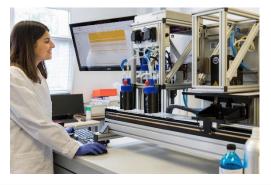


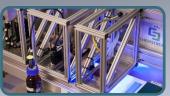
Adhesion of inkjet inks: Pain or gain?

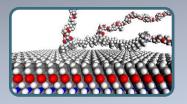
Dr. Yolanda Justo


Chemstream: The Chemical R&D Company

Profile

- > Founded in April 2010
- > Staff profile:
 - Chemistry
 - Material Science
 - Bio Engineer
- Located near Antwerp Belgium
- > Lab-facilities (500 m2)
 - Organic Synthesis
 - Chemical Formulation
 - Characterization




Chemstream: The Chemical R&D Company

Mission

To translate customer requirements into chemical formulations with dedicated functionalities, from **design to prototyping and implementation**

Organic Synthesis

- * Crystal, colorant and dispersant design
 - * Photochemistry
- * Interfacial chemistry, wetting and adhesion
 - * Superabsorbing polymers

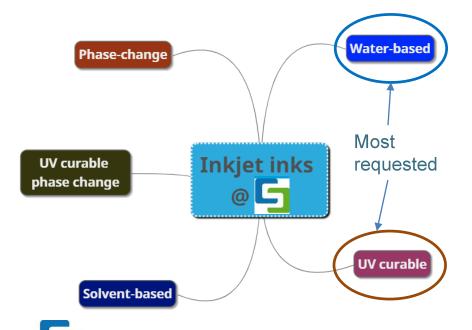
Technology

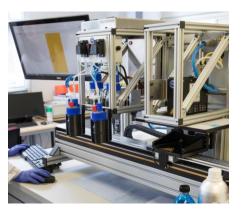
- * Dispersion technology
- * Coating, printing, jetting (Modular printing unit MPU)
- * Radiation curing (UV, UV-LED, e-Beam)
- *Atmospheric plasma

Methodology

- * Molecular Modeling
- * Design of Experiment (D.O.E.)
 - * Smart throughput screeining
- * Hansen solubility parameters (HSP)

Analytical and physical chemical tools


- * UVVIS, FTIR, GCMS, LCMS, GPC
- * Particle size distribution (PSD)
- * Contact angle, surface tension, Viscosity


SUSTAINABLE CHEMISTRY


Inkjet @ ChemStream

Modular Printing Units

- ➤ Mimic of an in line printing process
- > Fast iterations of ink prototypes
- ➤ Different inkjet printheads
- >Low investment level for customer
- ≥3D printing

Adhesion: the challenge

Water-based

✓ Good adhesion porous or specially treated substrates

- Challenging adhesion on nonabsorbing substrates.
- Use of binders.

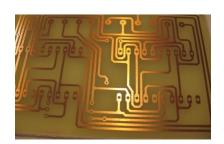
UV curable

✓ Ideal for non-absorbing substrates: metals, glass, plastics...

- ✓ Shrinkage of the cured film due to retraction during the polymerization of monomers.
- ✓ Pre-treatment often needed for a better wetting.
- ✓ In some cases, use of adhesion promoters needed.

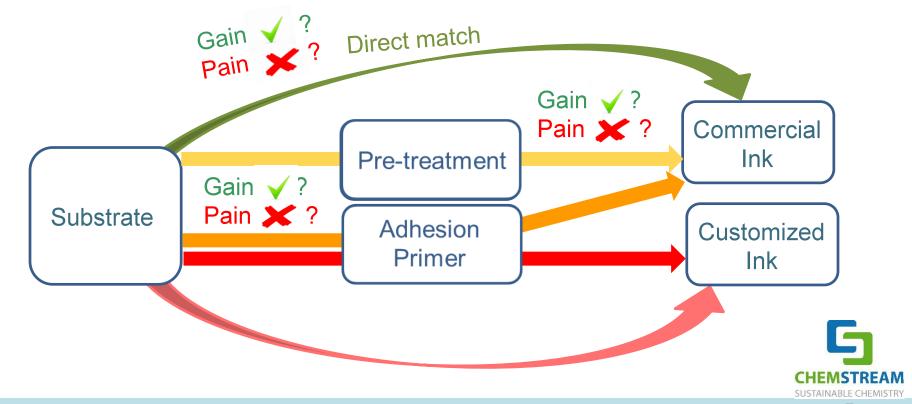
Adhesion: the challenge

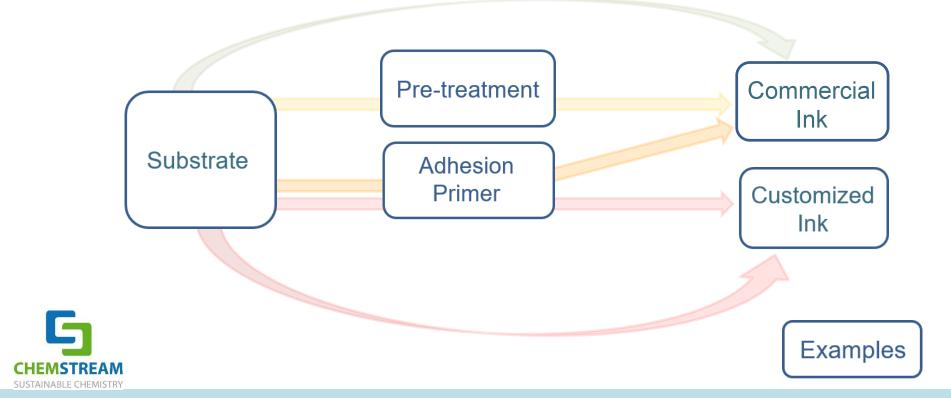
Tunable adhesion


Extra challenge:

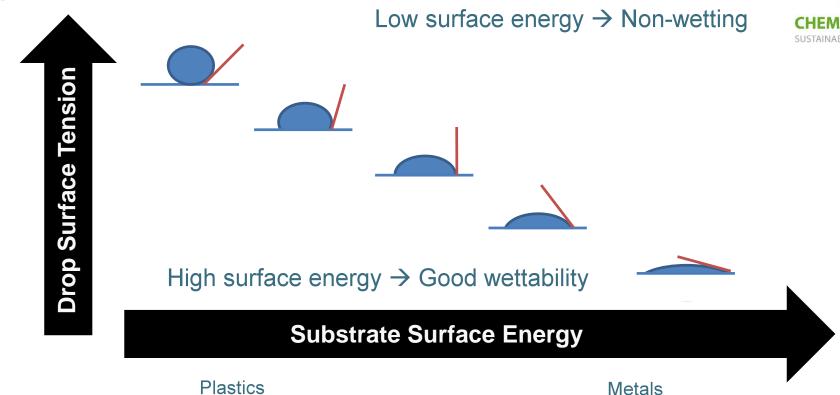
- 1. Excellent ink or primer adhesion
- 2. Deinkable @ high temperature, basic conditions

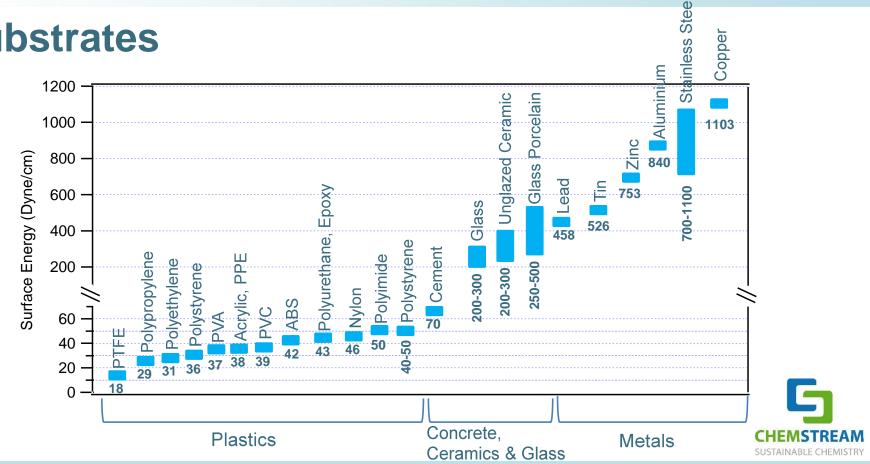
Examples: Returnable bottles


Examples:
Printed PCBs
(ink → stripping)



Adhesion: the challenging process


Adhesion: the challenging process


Substrates

Substrates

Pre-treatment: Activation and/or cleaning

CHEMSTREAM SUSTAINABLE CHEMISTRY

Examples of possible methods

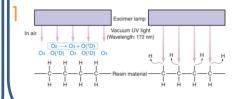
Atmospheric plasma

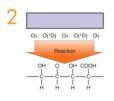
Surface activation

Air plasma forms: -OH, -CO, -COOH on the surface

Surface cleaning

Air plasma removes: Impurities, lubricants, oils, etc. from the surface


Corona


Surface activation

High-voltage discharge that ionizes the air forming: -OH, -CO, -COOH on the surface

UV-Ozone O₃ activation and cleaning

Pre-treatment: Activation and/or cleaning

Low surface energy substrates, e.g. Plastics

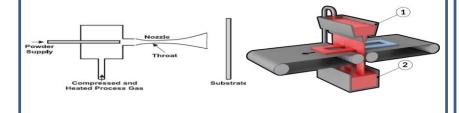
Creation of polar groups → wetting improvement

Breakage of polymer crystals, open of new surface → slight adhesion improvement

Drawback → Only a small amount of C atoms are functionalized:

- ✓ Enough for a better wetting
- ✓ Not enough for a good adhesion
- ❖ Adhesion → The most important is the ink formulation

Adhesion Primer



Adhesion coating

Compatible with coloured commercial inks.

Extra step needed

Coating method: e.g. Spraying or curtain coating

Coloured inks Adhesive coating Substrate

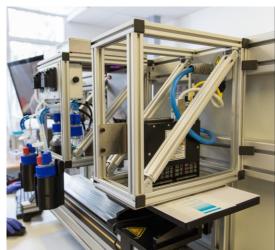
Jettable adhesion primer

Compatible with coloured commercial inks. In line with the other coloured inkjet inks

Extra step needed Extra print head

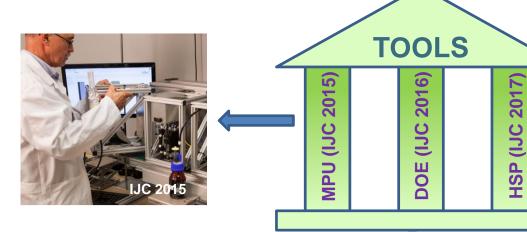
Coloured inks
Adhesive jettable primer
Substrate

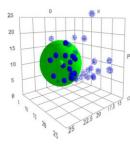
Customized ink


Ink with improved adhesion

No extra step needed Less equipment space

All coloured inks should be adhesive Challenging ink design


Adhesive coloured inks Substrate



Ink Design @ ChemStream

Hansen Solubility Parameters
Best Speaker Presentation IJC 2017

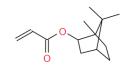
➤ "Like likes like"

Modular Printing Unit:

- ➤ Mimic of an in line coating/printing process
- ➤ Fast iterations of ink prototypes
- > Fast iterations with different printheads

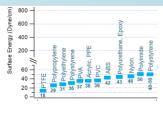
Smart throughput

- ➤ Design of experiments
- ➤ All parameters are changed simultaneously
- ➤ Short development time of formulations

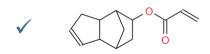


Adhesion on plastics

Ink formulation:


✓ Use of monofunctional monomers for a better adhesion

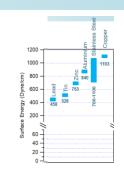
Isobornyl acrylate (IBOA)


Cyclic trimethylolpropane formal acrylate (CTFA)

e.g. Printing on plastic bottles

✓ Use of components to minimize shrinking → better adhesion

Dihydrodicyclopentadienyl acrylate (DCPA)


Multifunctional oligomers (better crosslinking but high viscosity

Adhesion on metals. Anodized Aluminium

Ink formulation:

- Use of monomers to minimize shrinking → better adhesion
- Use of adhesion promoters needed for a good adhesion

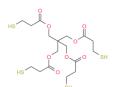
Phosphate functional

e.g. Printing on Al bike frame

Most adhesion promoters are acidic → Not always compatible with pigment dispersions

Alternative: sandwich adhesion primer + coloured inks on top

Adhesion on metals. Copper



Ink formulation:

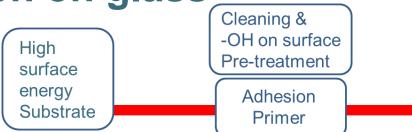
- ✓ Use of monomers to minimize shrinking → better adhesion
- ✓ Use of adhesion promoters needed for a good adhesion

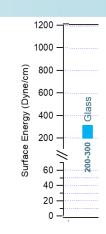
Phosphate functional (challenge: Acidity & pigments)

Polythiol (challenge: Ink stability)

Printed PCBs
Reversible adhesion
(ink → stripping)
Important! amount of adhesion promoter (reversibility)

1200


200 -


Customized

Ink

Ink formulation:

- ✓ Use of monomers to minimize shrinking → better adhesion
- ✓ Use of adhesion promoters needed for a good adhesion (mostly acidic)
- ✓ Adhesion more difficult to achieve than on metals. Phosphate & Silane best options

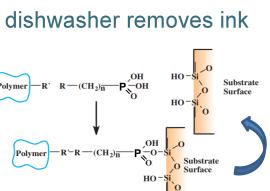
Phosphate functional

Silane functional

e.g. Printing on beer glasses

Adhesion on glass

Phosphate functional groups


- Adhesion promoter with strongest adhesion on glass.
- ✓ Drawback → Phosphates desorb in prolonged contact with water.

Printed beer glass → Not suitable option → e.g. dishwasher removes ink

Perfect for e.g. printing on wine bottles

water

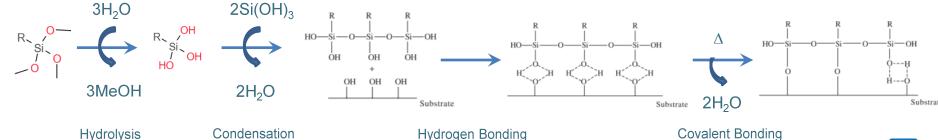
1000

800

600

Surface Energy (Dyne/cm)

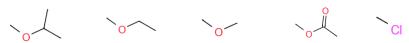
Adhesion on glass

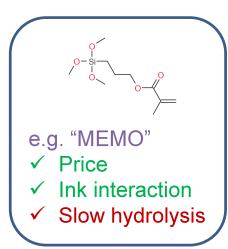

Silane functional groups

Slow

- ✓ Once the <u>covalent bond</u> is formed, excellent & resistant adhesion.
- ✓ Drawback: Kinetics are very slow. Formulation adapted to speed up the hydrolysis and condensation of the silanes (e.g. catalyst)

Adhesion on glass. Silane functional group

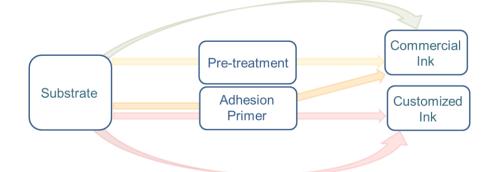



<u>Linker Group</u> → Chosen depending the composition of the ink. UV curable ink: e.g. (Meth)acrylic, Vinyl, Mercapto...

<u>Leaving group</u> → Trade-off between reactivity & stability.

Reactivity (Hydrolysis): CI- > AcOH > MeOH > EtOH > iPrOH

Stability: iPrOH > EtOH > MeOH > AcOH > Cl-



Conclusions

- ✓ Adhesion is one of the most critical attributes of an ink
- ✓ And also one of the biggest challenges
- ✓ A good adhesion between a substrate and an ink → complex process

ChemStream → Experts in ink formulations with strong adhesion know-how

Thanks for your attention

You are invited at our booth for further information and discussions.

Not enough time during IJC 2018? Don't worry! More info on our website: CHEMSTREAN CONTROL OF THE PARTY OF THE PARTY

www.chemstream.be

