

Inkjet 3D Printing

High Resolution Multi-Material Digital Additive Manufacturing

> Dr. Marin Steenackers ChemStream

TheIJC.com

ChemStream: The Independent Chemical R&D Company

Translating customized requirements into chemical formulations with dedicated functionality, from **design to prototyping and implementation**

Core activities:

- Innovative contract research
- Customized product development
- Design and synthesis of functionalized (bio-based) polymers (dispersants, emulsifiers, surfactants...)

Main deliverables:

Nano dispersions

Coatings

Inkjet inks

ChemStream: The Independent Chemical R&D Company

INKS FOR THE FUTURE

Founded in April 2010

TheIJC.com

- > Staff profile (14 FTE, 11 PhDs)
 - Chemistry (12)
 - Material Science (1)
 - Bio Engineer (1)
- Located near Antwerp Belgium
- > Lab-facilities (550 m²)
 - Organic Synthesis
 - Chemical Formulation
 - Characterization
- Prototype production facility
 - Coatings: 250 L batches
 - Inkjet inks: 25 L batches

ChemStream: The Independent Chemical R&D Company

Expertises

Organic Synthesis

- * Crystal, colorant and dispersant design * Photochemistry
- * Interfacial chemistry, wetting and adhesion
- * Superabsorbing polymers * Flow chemistry

Technology

- * Dispersion technology * Coating, printing, jetting (Modular printing unit MPU)
- * Radiation curing (UV, UV-LED, e-Beam)
- * Atmospheric plasma

Methodology

- * Molecular modeling * Design of Experiments (DoE)
- * Smart throughput screening * Hansen solubility
 - parameters (HSP)

- Analytical and physical chemical tools * UVVIS, FTIR, GCMS, LCMS, GPC
- * Particle size distribution (PSD)
- * Contact angle, surface tension, viscosity

() TheIJC.com

Inkjet @ ChemStream

Modular Printing Units

Mimic of an in-line printing process
 Fast iterations of ink prototypes
 Different inkjet printheads

What is 3D inkjet printing

INKS FOR THE FUTURE

UV-curable inkjet inksPhase change inkjet inks

() TheIJC.com

29-30 OCTOBER 2019, DÜSSELDORF

What is 3D inkjet printing

Printing with support ink
 Allows complex geometries
 Sharper structures

Modular 3D Printer

Dissolve support ink after printing

() TheIJC.com

29-30 OCTOBER 2019, DÜSSELDORF

What is 3D inkjet printing

What is 3D inkjet printing

Printing with different object inks
 Allows multimaterial printing
 Embedded functionality

() TheIJC.com

29-30 OCTOBER 2019, DÜSSELDORF

Why Inkjet 3D Printing?

- □ High resolution
- Optically smooth objects
- Multi-material
 - Different material properties
 - Embedded functionality
- □ High productivity

3D printing of lenses: a unique technology

INKS FOR THE FUTURE

Printing without support ink Optically flat surface without post-polishing

3D printing of lenses: material challenges

- High transparency and low yellowingPhotoinitiators
 - **Stabilizers**
- Overprintability
 - Wetting agents
 - Balancing entire formula
- Material properties
 - Impact resistance
 - Hardness
 - Refractive index

3D printing of lenses: future developments

Micro lenses

- □ High (>1.6) and low (<1.4) refractive index materials
 - Multimaterial 3D inkjet printing for Gradient-index lenses
 - Inks based on commercially available monomers as well as tailor made inhouse synthetized building blocks

3D printing of (bio) microreactors

High resolution 3D printing
 XY resolution: 50 µm
 Z-resolution: 3-30 µm
 Smooth surface morphology

BUILD THE FUTURE

INKS FOR THE FUTURE

3D printing of microreactors: material challenges

INKS FOR THE FUTURE

- Overprintability and co-printability
 - Finetuning dynamic surface tension (ink) and surface energy (pinned/cured ink)
 - Support on object + object on support printing
 - Wet-in-wet vs. wet-on-dry printing
- Fast (water) dissolving support material to create thin microfluidic channels
- Material properties

heIJC.com

- Hydrophilic / hydrophobic
- Biocompatibility / cytotoxicity
- Embedded functionality

Print head object Print head support

3D printing of microreactors: future developments

Microreactors

- Further decrease channel width
- Controlled and tunable surface morphology
- New embedded (bio) functionalities

□ Future and futuristic applications

- Bio-scaffolds
- Bio-implants
- Tissue engineering
- 3D inkjet printing of organs

Multimaterial inkjet 3D printing

Embedded functionality

- Colors
- Fluorescent
- □ Ferromagnetic
- Different refractive index
- **]** ...
- Different mechanical properties
 Hard/soft
 High/low T_g
 ...

BUILD THE FUTURE

INKS FOR THE FUTURE

18

Mechanical properties

TheIJC.com

□ Smart choice of building blocks

Cross linking density
 Functionality side chain
 Functionality linker
 Intramolecular interactions

Mechanical properties

□ Smart choice of building blocks

Molecular design toolbox

Cross linking density
 Functionality side chain
 Functionality linker
 Intramolecular interactions

Mechanical properties

- Heat deflection temperatureYoung modulus
 - Elongation at break
 - Tensile strength
- □ Impact resistance
- Scratch resistance
- Tear resistance

BUILD THE FUTURE

INKS FOR THE FUTURE

29-30 OCTOBER 2019, DÜSSELDORF

Mechanical properties

□ Molecular design toolbox

TheIJC.com

Bifunctional crosslinkers

T _ si _ ^

CONTRACTOR AND AND ADDRESS OF THE OWNER OF

INKS FOR THE FUTURE

Mechanical properties

TheIJC.com

Smart choice building blocks + DoE for optimized compromise between different physical properties

INKS FOR THE FUTURE

Thanks for your attention

You are invited at our booth A2

Not enough time during IJC 2019? Visit our booth 430: Inks for the Future @ InPrint

INTERNAT International Exhibition of Print Technology for Industrial Manufacturing

MUNICH 12 – 14 NOVEMBER 2019 | Munich Trade Fair, Germany

www.chemstream.be