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Abstract One of the most interesting nonlinear phe-
nomena ofmode coupling is internal resonances,which
can promote directed energy transfer from one eigen-
mode to another, even at small amplitudes in free or
forced oscillations. Internal resonances can be highly
beneficial for many engineering applications. How-
ever, inmost cases, internal resonances are encountered
either accidentally or by proper tuning of different con-
trol parameters during experiments without prior plan-
ning. Therefore, the ability to a priori design a mechan-
ical resonator with intentional internal resonance at
given amplitudes holds great promise. Here, we show a
simplemethodological way tomanipulate the eigenfre-
quencies and the coupling between the eigenmodes of a
doubly clampedmechanical beam using a genetic algo-
rithm for shape optimization of the initial curvature of
the beam.We demonstrate that ourmethodology can be
applied to both 1-to-2 and 1-to-3 internal resonances of
micro-beams.Our results pave theway to a new class of
design techniques for internal resonance enhancement
based on shape optimization.

S. Rosenberg (B) · Y. Feldman · O. Shoshani
Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
e-mail: saharros@post.bgu.ac.il

Y. Feldman
e-mail: yurifeld@bgu.ac.il

O. Shoshani
e-mail: oriels@bgu.ac.il

Keywords Internal resonance · Shape optimization ·
Genetic algorithm · Curved mechanical beam

1 Introduction

In contrast to the well-understood dynamics of lin-
ear systems, nonlinear systems are significantly more
challenging, e.g., small fluctuations can lead to large
responses, and there is a plethora of phenomena that
cannot be found in linear systems, such as isolated
limit cycles, multiple co-existing solutions, energy-
dependent frequency, bifurcations, and chaos [1,2].
However, the complexity of nonlinear systems does
not necessarily limit their performance. In fact, there
are several applications where nonlinearity can serve
as a means to improve the performance of engineering
applications. Examples include mechanical amplifica-
tion schemes [3], improved frequency stability [4,5],
increased dynamic range [6–8], and noise suppression
procedures [9,10]. Consequently, the ability to manip-
ulate the nonlinearity in resonators allows one to design
devices with greater control over their dynamical
responses [11]. One way to manipulate the nonlineari-
ties of a resonator is by using shape optimization meth-
ods, where changing the cross-sectional area of a res-
onator or its shape function causes a decrease/increase
in the geometric contribution to the resonator nonlin-
earities [12,13]. More sophisticated methods, such as
topology optimization, which does not require a base-
line design, and the central task is to determine which
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geometric points in the design mesh should be mate-
rial points and which points should contain no material
[14], and materials optimization and meta-materials,
which also allow greater control on the properties of
the device [15], can also be used.

Mode coupling has recently become the focus
of many studies [16–18], which explore previously
unknownphenomena and newapplications for their use
to improve resonator performance. The mode coupling
of mechanical resonators has been commonly used in
the design of MEMS filters [19,20], inertial sensors
[21,22], and mass sensing [23,24]. Perhaps, the most
interesting phenomenon of mode coupling is internal
resonance (IR) in which eigenfrequencies are (exactly
or nearly) rationally related. That is, ω1/ω2 ≈ n/m
where n and m are integers, constitutes the so-called
n-to-m IR [25]. IRs may be activated in free as well as
forced oscillations and are responsible for the redistri-
bution of energy between the interacting eigenmodes
of the system. The IRs promote directed or targeted
energy transfer from one eigenmode of a dynamical
system to another, even for small (weakly nonlinear)
amplitudes [26–28] and are most prominent in sys-
tems with small dissipation, such as micro- and nano-
resonators [29–32]. Nevertheless, IRs have also been
thoroughly explored in the macro-scale mechanical
systems; examples include the studies of Miles [33,34]
and Johnson and Bajaj [35] for the 1-to-1 IR, Sethna
[36] and Haddow et al. [37] for the 1-to-2 IR, Chin
and Nayfeh [38,39] for the 1-to-3 IR, and at least two
monographs entirely devoted to the subject [25,40].
The IRs can be highly beneficial for many engineer-
ing applications, such as phase-noise suppression [4],
frequency-combs generation [41,42], tunable damping
and relaxation rates [43,44], and enhanced energy har-
vesting [45,46].

To date, most IRs are encountered either acciden-
tally or by “on the fly” proper tuning of different control
parameters [47,48]. Therefore, the ability to predesign
a mechanical resonator with targeted IR that occurs
at predetermined amplitudes holds great promise. In
this paper, we consider, perhaps, the simplest way to
achieve this goal. Specifically, we present a means of
manipulating the eigenfrequencies and the coupling
between the eigenmodes of a doubly clamped mechan-
ical beam using a genetic algorithm for shape optimiza-
tion of the initial curvature of the beam (which is signif-
icantly simpler than other optimization methods). We
show that the genetic algorithm chooses the optimal

initial shape of a curved beam to alter the conservative
nonlinearities and achieve 1-to-3 and 1-to-2 IRs. The
rest of the paper is organized as follows: in Sect. 2, we
derive the governing equations for two-mode internal
resonance from the nonlinear partial integrodifferen-
tial equation of the curved beam using Galerkin pro-
jection; in Sect. 3, we present the methods used for the
shape optimization and the procedure to obtain the final
design of the beams; in Sect. 4,we illustrate the applica-
tion of our methodology to MEMS devices with spec-
ified physical properties and validate our final designs
by comparing numerically obtained dynamic responses
with the corresponding analytically calculated resonant
envelope modulations. Section5 summarizes our main
findings and discusses their implications.

2 Problem formulation

We consider the conservative transverse vibration of a
clamped-clamped shallow arch mechanical beam with
a shape described by the functionw0(x), width b, thick-
ness d and length � (Fig. 1). The beam is idealized as
a one-dimensional element, where the transverse dis-
placement field w(x, t) is planar along the z axis, and
perpendicular to the axis of the beam, x . The beam
has constant density ρ, Young’s modulus E , and cross-
section A = b × d. Using the Euler-Bernoulli beam
model, the nonlinear (truncated at cubic order) equa-
tion governing the transverse motion of the beam is
given by1 [49–53]

E I ∂4w̃

∂ x̃4
+ ρA

∂2w̃

∂ t̃2
− E A

2�

[
∂2w̃

∂ x̃2
− ∂2w̃0

∂ x̃2

]

∫ �

0

[(
∂w̃

∂ x̃

)2

− 2

(
∂w̃

∂ x̃

∂w̃0

∂ x̃

)]
dx̃ = 0, (1)

and subject to the clamped-clamped boundary con-
ditions

w̃(0, t̃) = w̃(�, t̃) = ∂w̃

∂ x̃
(0, t̃) = ∂w̃

∂ x̃
(�, t̃) = 0. (2)

Rescaling the spatial variables by � (x = x̃/�,w =
w̃/�,w0 = w̃0/�) and time by t = t̃

√
E I/ρA�4, we

1 Under the assumption of a shallow arch, where terms of order
O(w̃0

n) with n > 1, and their derivatives, can be neglected.
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Fig. 1 Shape optimization of a curved mechanical beam. The
doubly clamped beam of length � and rectangular cross-section
(b × d) is straight in the initial configuration (left panel). The
curvature of the beam is modified in each iteration by the genetic
algorithm via the function w0(x) (the blue dashed line), which

is confined to a maximal depth h. The final configuration of
the curved beam is retrieved after N iterations (right panel) and
exhibits IR relation between its first two modes and enhanced
mode coupling, where α is the coupling strength. (Color figure
online)

obtain the following non-dimensional partial integro-
differential equation

ẅ + w I V − χ
(
w′′ − w′′

0

)
∫ 1

0

((
w′)2 − 2

(
w′w′

0

))
dx = 0, (3)

where the dot overhead symbol denotes differentiation
with respect to the non-dimensional time, the prime
symbol denotes differentiation with respect to the non-
dimensional axial direction x , the “IV” superscript
denotes the fourth derivative with respect to the non-
dimensional axial direction x , and χ = 6(�/d)2 is the
aspect ratio parameter. We assume that the motion of
the beam is dominated by its first twomodes,w(x, t) =
φ1(x)q1(t) + φ2(x)q2(t), and perform a Galerkin pro-
jection (Appendix A) of Eq. (3) onto φ1(x) and φ2(x)
to obtain a pair of nonlinearly coupled ordinary dif-
ferential equations of the modal coordinate q1(t) and
q2(t)

q̈1 + ω2
1q1 + c(2,0)q

2
1 + c(1,1)q1q2 + c(0,2)q

2
2

+ c(3,0)q
3
1+c(2,1)q

2
1q2+c(1,2)q1q

2
2 + c(0,3)q

3
2 =0,

(4)

q̈2 + ω2
2q2+d(2,0)q

2
1 +d(1,1)q1q2+d(0,2)q

2
2 +d(3,0)q

3
1

+ d(2,1)q
2
1q2 + d(1,2)q1q

2
2 + d(0,3)q

3
2 = 0. (5)

The indices in the parenthesis of the coefficients c(i, j)

and d(i, j) indicate the power i of the modal coordinate
q1 and the power j of the modal coordinate q2. For a
given IR, many of the nonlinear terms that couple the

modal coordinates in Eqs. (4)–(5) can be disregarded
as they do not promote energy exchange between the
modes, and therefore, have negligible effects on the
system dynamics. There are several systematic ways to
eliminate these non-resonant terms, such as themethod
of averaging, multiple scales, and normal forms [54–
57].However,we are focusingonly on1-to-2 and1-to-3
IRs, which are associated with a single-term coupling
potentialUcpl = αqn1q2, where n = 2 for the 1-to-2 IR
[43] and n = 3 for the 1-to-3 IR [58]. Hence, we can
rewrite Eqs. (4)-(5) in the following compact form

q̈1 + ω2
1q1 + nαqn−1

1 q2 + β1q
2
1 + γ1q

3
1 = 0, (6)

q̈2 + ω2
2q2 + αqn1 + β2q

2
2 + γ2q

3
2 = 0, (7)

where there is a single coupling term2 in each model
equation with a single coupling coefficient (α), and
there are two additional nonlinear terms, quadratic
(β1,2) and cubic (γ1,2) that belong to the isolated
dynamics of each mode, i.e., not related to the modal
interaction. All of these coefficients are either directly
or indirectly (via the eigenmodes) depend on the initial
shape of the beam.As described in detail in the next sec-
tion, we use a genetic algorithm [59] to find the optimal
shape of the beam w0(x) to reach IR conditions while
enhancing the coupling α between the modes.

2 We omitted here the dispersive coupling terms that stem
from the potential Udpr = ηq21q

2
2 , which do not promote energy

exchange in 1-to-2 and 1-to-3 IRs [58].
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3 Methodology and procedures

In this section, we present the methods that we used for
the shape optimization procedure and our way of sys-
tematically applying the genetic algorithmwith numer-
ical methods to optimize the geometric nonlinearities
of the beam for 1-to-2 and 1-to-3 IRs.

3.1 Numerical methods

In all the numerical calculations in this paper,weuse the
spectral method for the spatial discretization onCheby-
shev grid x j = cos ( jπ/J ), j = 0, 1, ..., J , where
J+1 is the number of grid points. For the smooth func-
tions that we consider in this study, spectral methods
provide considerably higher accuracy for differentia-
tion and integration over other numericalmethods, such
as finite differences, and finite elements [60]. We use
the Chebyshev differentiation matrices [61,62], which
are calculated on a Chebyshev grid that clusters at the
boundaries. This allows us to accurately describe the
function by interpolating polynomials over the entire
computational domain using a relatively small num-
ber of basis functions. The numerical integration on
the Chebyshev points is done by using the Clenshaw-
Curtis quadrature [61], which is defined by integrating
the polynomial interpolant. For the time stepping, we
use the ODE45 solver of Matlab, which is based on
a six-stage, fifth-order, Runge-Kutta method. Due to
the fast convergence of the spectral method, we use a
time step of order O(Δt) = 10 · J−3, which yields
a stable numerical scheme for all the simulations that
we conducted (see Sect. 4 for discussion on numerical
stability).

3.2 Eigenmodes of a curved beam

To find the eigenmodes for the Galerkin projection,
we assume a modal solution of the form w(x, t) =
φ(x) exp (iωt) and obtain (after integration by parts
and applying boundary conditions) from the linear part
of Eq. (3) the following boundary value problem

φ I V − 2χw′′
0

∫ 1

0
φw′′

0dx = ω2φ,

φ = φ′ = 0 @x = 0, 1. (8)

We numerically solve Eq. (8) by using the Cheby-
shev differentiation matrices and the Clenshaw-Curtis
quadrature weights [61]. To assess the validity of the
numerical eigenmodes solver, we test it on a curved
beam with an initial shape w0(x) = h[cosh(4.73x) −
cos(4.73x)−0.98(sinh(4.73x)−sin(4.73x))].We note
that the chosen shape, w0, is identical to the first mode
of a doubly clamped straight beamwith a prefactor h �
1 (see Fig. 2). Thus, for sufficiently small h, the integral
term in Eq. (8) tends to zero (both from the orthogo-
nality of the eigenmodes and the smallness of w0) and
we recover the eigenmodes of a straight beam φk =
Ck[cosh(λk x)−cos(λk x)−αk(sinh(λk x)−sin(λk x))],
where λk = {4.7300, 7.8532, 10.9956, 14.1372, ...},
αk = (cosh λk − cos λk)/(sinh λk − sin λk), and
the constant Ck satisfy the orthonormality condition:
〈φk, φl〉 = ∫ 1

0 φkφldx = δkl .

3.3 Frequency crossing of the isolated modes

To ensure a resonant interaction between the first and
second modes of the beam, it is desired to engineer
these modes such that the weighted energy-dependent
frequencies (Ω1,2) of the isolated modes (i.e., when
α = 0) will intersect at a non-zero energy level
nΩ1(E1) − Ω2(E2) = 0, n = 2, 3, E1 + E2 �= 0.
When this frequency crossing condition is satisfied, we
can prepare the individual modes with the prescribed
energy for frequency crossing (E1 and E2, respectively)
and observe resonant modal interaction (which is man-
ifested via frequency repulsion/anti-crossing/veering
[63,64]) even for low values of the coupling coefficient
α.

The equations of motion for the isolated modes are
given by q̈i + ω2

i qi + βi q2i + γi q3i = 0, i = 1, 2,
which can be integrated (due to conservation of energy)
to yield q̇2i /2 + Ui (qi ) = Ei , where Ui = ω2

i q
2
i /2 +

βi q3i /3+γi q4i /4. Thus, as described in Ref. [53] and in
Appendix B, the frequency of oscillation of the isolated
mode is given by

Ωi (Ei ) = π

2K (ki )

√
γ

2
z(1)i z(2)i , (9)

where K (ki ) is an elliptic integral of the first kind,
k2i = [(q(1)

i − q(2)
i )2 − (z(1)i − z(2)i )2]/(4z(1)i z(2)i ),

z( j)i = [(q(3)
i − q( j)

i )(q(4)
i − q( j)

i )]1/2, j = 1, 2,

and q( j)
i ( j = 1, 2, 3, 4) are the roots of the quartic

equation Ui (qi ) = Ei in which q(1)
i > q(2)

i are the
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Fig. 2 The normalized first four modes of a doubly clamped
beam with an initial shape of the first mode of a straight beam
with normalized (by the length of the beam) height of h = 0.001
(black). Thewavenumber of the firstmode (blue) isλ1 = 5.4061,

for the second mode (in orange) λ2 = 7.8532, third mode (yel-
low) λ3 = 11.0387, and the fourth mode (purple) λ = 14.1372.
The gray dashed lines are the modes of the straight beam. (Color
figure online)

real and q(3)
i = q(4)∗

i are complex conjugates [65].
Equation (9) provides an exact expression for the fre-
quency of oscillation of the isolated mode for any
energy level Ei , and therefore, can be used to find
modes that satisfy the frequency crossing condition
nΩ1(E1) − Ω2(E2) = 0, n = 2, 3, E1 + E2 �= 0
(see Fig. 3).

To prepare the modes in the appropriate energy lev-
els for resonant interaction, we write the expression for
the potential energy of the beam [53,66]

U = 1

2

∫ 1

0
w′′2dx

+ χ

4

∫ 1

0

(∫ 1

0

(
2w′

0w
′ − w′2) dx

)2

dx . (10)

Using our two-mode approximation w(x, t) = q1(t)
φ1(x) + q2(t)φ2(x), we find from Eq. (10) that U =
U1 +U2 +Ucpl. Therefore, by initiating the oscillation
of the beam from rest q̇1,2(0) = 0, we find that the
initial deflection of the beam w(x, 0) = φ1(x)q1(0) +
φ2(x)q2(0) can be calculated from the algebraic equa-
tionsU1 = U (q1(0)) = E1 andU2 = U (q2(0)) = E2.

As depicted in Fig. 3, there are two possible options
to generate the desired frequency crossing condition
for enhanced resonant interaction. In the 1-to-2 IR
(left panel), there is a crossing of the backbone curves,

which means that there is an energy level E1 = E2 =
Ecross, such that nΩ1(Ecross) − Ω2(Ecross) = 0. This
option is possible only if one of the modes experi-
ences a non-monotonic dependence of the oscillation
frequency on the energy [53] or if the effective stiffness
of one mode is higher than the other while its weighted
eigenfrequency is lower, e.g., nω1 < ω2 and nγeff1 >

γeff2 , where γeff1,2 = γ1,2 − (10/9)(β1,2/ω1,2)
2 [67].

In the second option, which is more accessible, we
prepare the individual modes at different energy levels
E1 �= E2 to satisfy the frequency crossing condition.
The right panel of Fig. 3 shows such a scenario for the
1-to-3 IR.

3.4 The genetic algorithm

Our genetic algorithm uses an initial shape function
of a straight beam w(0,0) = 0 to create a population
(a group of shape functions) of other solutions in its
vicinity (the first index refers to the generation, and the
second index refers to the individual in the population).
After calculating the coupling coefficient α, the ratio
between the eigenfrequencies of the modesω2/ω1, and
the condition of frequency crossing at non-zero energy
levels (as described in Sect. 3.3), for each individual (a
certain shape function) of the population, the algorithm
sorts the population by fitness and creates the next gen-
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Fig. 3 The energy-frequency backbone curves of the first and
second modes for the case of 1-to-2 IR (on the left panel) and the
case of 1-to-3 IR (on the right panel). E1 and E2 represents the

energy levels required for each isolated mode in order to satisfy
the frequency crossing condition nΩ1(E1) − Ω2(E2) = 0, n =
2, 3, E1 + E2 �= 0

eration of the population. Mathematically, the genetic
algorithm solves the following minimization problem

min
w0(x)

[α(w0(x), φ1(w0(x)), φ2(w0(x))]−1 (11a)

s.t. w0(x) = w′
0(x) = 0 @x = 0, 1 (11b)

|ω2/ω1 − 1/n| < ε, n = 2, 3, ε � 1 (11c)

nΩ1(E1) − Ω2(E2) = 0, n = 2, 3,

E1 + E2 �= 0. (11d)

To this end, we use the following three operators:(i)
Transcendence operator in which the fittest solutions
survive for the next generation, i.e., w(t+1,i) = w(t,i).
Here, the fittest solutions will be the ones that provide a
ratio between the natural frequencies ω2/ω1, which is
closer to IR ratio than the rest, and the coupling coef-
ficient α is larger than the rest, while also ensuring
that the frequencies of the isolated modes intersect at
a non-zero energy level. Since there could be multiple
solutions for the genetic algorithm, it is designed so
that the ratio of the natural frequencies of the fittest
shape functions will lie within a certain range of the
IR and the fittest solution will have the highest cou-
pling between the modes (for more details in a spe-
cific case, see Sect. 4). (ii) Crossover operator, where
each pair of solutions is being used to create a new
solution. For continuity of the new shape function, we
use a random number r1 ∈ [0, 1] (using “rand” func-
tion in Matlab which returns a random scalar from

the uniformly distributed interval) to be the weight
of each “parent” in creating the “child” solution, i.e.,
w(t+1,i) = r1 · w(t,i) + (1 − r1) · w(t,i+1). And, (iii)
Mutation operator, where the solutions are changed by
adding a random order Chebyshev polynomial multi-
plied by a secondpolynomial that satisfies the boundary
conditions, i.e., w(t+1,i) = w(t,i) + Tk(x) · r2 · PBC ,
where Tk(x) is the k-th Chebyshev polynomial of the
first kind with k > 1 [68], r2 is a random number from
the uniformly distributed interval r2 ∈ [−1, 1], and
PBC = 16x2(x − 1)2 is a polynomial that enforce the
boundary conditions with a maximal value of 1 at the
midpoint of the beam x = 1/2.

The probability of these operators is defined in
advance by the percentage of the next generation pop-
ulation that is created by each of them. The algorithm
finds an optimal shape that enhances the coupling coef-
ficient α, while satisfying |ω1/ω2 − 1/n| < ε, ε �
1, n = 2, 3, and ensuring a frequency crossing at a
non-zero energy level. A summary of the shape opti-
mization procedure is depicted in the flow chart below
(Fig. 4).

4 Analysis and design of beams with enhanced IRs

For an illustration of our methodology, we use a micro-
beam with physical dimensions of � = 1000μm, d =
2μm, b = 30μm (which yield A = b · d = 60μm2,
and I = b · d3/12 = 20μm4), and mechanical prop-
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Fig. 4 Flow chart of the shape optimization procedure for enhanced internal resonance using genetic algorithm

erties of silicon, i.e., Young’s modulus E = 169GPa
and Poisson’s ratio ν = 0.28 [69]. Hence, the effec-
tive modulus of elasticity (plain strain) is Eeff =
E/(1 − ν2) = 183.377GPa. The density of silicon is
ρ = 2300kg/m3. Therefore, the transition between the
non-dimensional frequency to dimensional frequency
is given by ω̃ = ω

√
E I/ρA�4 = ω · 5155.228rad/s,

and the transition between the non-dimensional energy

to dimensional energy is given by Ẽ = E(Eeff I/�) =
Etot · 3.667 × 10−9J.

For both cases of 1-to-2 and 1-to-3 IRs, the genetic
algorithm was applied on an initial shape of a straight
beam, i.e., w0(x) = 0. The number of grid points
(Chebyshev nodes) in each function (and for the rest
of the calculations in this paper) is J + 1 = 101.
The algorithm created a first generation of a popula-
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tion of 200 individuals using the mutation operator,
and from the second generation, for the case of 1-to-
2 IR, the transcendence probability is defined to be
40%, the crossover probability is 25%, and the muta-
tion probability is 35%, which, after multiple runs on
every combination of probabilities (for 200 individu-
als), has given the highest coupling between themodes.
For the case of 1-to-3 IR, the probabilities are defined
to be 40%, the crossover probability is 20%, and the
mutation probability is 40%, which yielded the highest
coupling between the modes (see discussion below on
sensitivity and multiple solutions of the genetic algo-
rithm). The algorithm converged to an optimal shape
function for the case of 1-to-2 IR after 89 generations
(Fig. 5), and after 85 generations for the case of 1-to-3
IR (Fig. 6).

We note that our optimization problem is not con-
vex and that multiple local optima could exist. Find-
ing the global optimum of a non-convex optimization
is an NP-hard problem, which is out of the scope of
our current simple analysis. Furthermore, it is well-
known [70–72] that the genetic algorithm is highly
sensitive to the procedure in which we evaluate the
fitness of a solution and that different procedures can
converge to different local optima. Throughout this
study, we start the procedure by first satisfying the
constraint of nearly rationally related eigenfrequencies
|ω1/ω2 − 1/n| < ε, n = 2, 3, ε = 5 × 10−4, and
therefore, a solution that is closer to IR has a higher
fitness value than a solution that has a higher coupling
value. After the constraint of nearly rationally related
eigenfrequencies was satisfied, we began enhancing
the coupling between the modes while satisfying the
frequency crossing condition. Moreover, the probabil-
ity of three operators (transcendence, crossover, and
mutation) also plays a significant role in converging
the genetic algorithm to a local optimum. In Figs. 7 and
8, we show some of the different values we obtained
for the frequency ratio (left panel) and mode coupling
(right panel) for different combinations of probabili-
ties. The optimal shape function in each combination
converged to an optimal solution within 85 generations
for both 1-to-2 and 1-to-3 IRs. The coupling terms
obtained for the different combinations ranged between
2.9 × 103 and 2.3 × 105 for the 1-to-2 IR (see Fig. 7)
and between 1.8 × 108 to 7.2 × 108 for the 1-to-3 IR
(see Fig. 8).We note that while the shape of the optimal
curved beam can be considerably different for different
probability combinations that yield roughly the same

coupling coefficient (Appendix C, Fig. 12), the conver-
gence towards a specific local optimum is robust and
only small changes occur (both in the shape of the beam
and coupling coefficient) fromgeneration 50 to the final
generation 89 (Appendix C, Fig. 13).

To validate that our final designs are prone to the
desired IRs, we numerically simulate Eq. (3) with the
initial conditions w(x, 0) = φ1(x)q1(0) + φ2(x)q2(0)
and ẇ(x, 0) = 0 as described in subsection 3.3. We
project the numerically calculated displacement field
w(x, t) onto the first two mode q1,2 = 〈w,φ1,2〉 =∫ 1
0 wφ1,2dx (Fig. 9). The modal coordinates q1(t) and
q2(t), clearly show beating types of responses, which
correspond to their resonant energy exchange (Fig. 9,
bottom). Furthermore, as we show in Appendix C,
Fig. 14, the modal interactions also occur when only
one of the modes has a non-zero initial energy. The
resonant interaction is obvious when the energy is ini-
tially only in the first mode as it drives the secondmode
directly via the term αqn1 in Eq. (7). However, the sec-
ond mode drives the first mode parametrically via the
term nαqn−1

1 q2 in Eq. (6), and hence, when the energy
is initially only in the second mode, the resonant inter-
action occurs due to instability and in the presence of
small energy perturbations in the first mode.

The beating envelopes of the modal coordinates
can be calculated analytically and compared with the
numerical simulations. For the sake of brevity, we show
here only the highlights of the analytical calculation
of the amplitude modulations for the 1-to-2 IR (see
Appendix D for more details). With the inclusion of
the dispersive coupling terms, the normal form of the
1-to-2 IR reads

q̈1 + ω2
1q1 = −β1q

2
1 − γ1q

3
1 − 2αq1q2 − 2ηq1q

2
2 ,

(12)

q̈2 + ω2
2q2 = −β2q

2
2 − γ2q

3
2 − αq21 − 2ηq21q2. (13)

Applying the method of averaging [55], and normal-
izing the complex amplitude equations as shown in
Appendix D, we can describe the action variable I and
the angle variable ψ in terms of the averaged Hamil-
tonian of the systemH, the Manly-Rowe invariantM,
and the potential of the system Ueff(I ).

The potential Ueff(I ) is a quartic polynomial in I
parameterized by M and H. It can have a single well
or two wells separated by a local maximum [58]. In the
case where the local maximum of the double potential
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Fig. 5 Shape optimization for 1-to-2 IR. The genetic algorithm
evolves the shape of the curved beam and saturates after 89 gen-
erations on the final design that optimizes the frequency ratio

ω2/ω1 and the coupling coefficient while ensuring that the fre-
quency crossing condition of the isolated modes is met

Fig. 6 Shape optimization for 1-to-3 IR. The genetic algorithm
evolves the shape of the curved beam and saturates after 85 gen-
erations on the final design that optimizes the frequency ratio

ω2/ω1 and the coupling coefficient while ensuring that the fre-
quency crossing condition of the isolated modes is met

well lies above zero, the equationUeff(I ) = 0 has four
real solutions I1 > I2 > I3 > I4, where depending on
the initial condition I (0), I (τ )oscillates either between
I1 and I2, or between I3 and I4. In the first case, the
oscillations I (τ ) between I1 and I2 can be described
in terms of Jacobi elliptic functions [73]

I (u) = (I1 − I2)I3 sn2(u|m) − (I1 − I3)I2
(I1 − I2) sn2(u|m) − (I1 − I3)

,

u = τ

√
3(48γ1+3γ2−32η)2

1024γ 2
1

2√
(I1− I3)(I2− I4),

m = (I1 − I2)(I3 − I4)

(I1 − I3)(I2 − I4)
. (14)

From the above analytical solution, we find that q1 =
2�1 I 1/2 cos(ω1t + arg(A1n)) and q2 = 21/2�2(M −
I )1/2 cos(2ω1t + arg(A2n)) (see Appendix D for the
definitions of �1,2 and A1,2n). These amplitude mod-
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Fig. 7 Convergence to an optimal shape for 1-to-2 IR with
different probabilities of the genetic algorithm operators. The
ratio of the natural frequencies (left panel) and the mode cou-
pling coefficient (right panel) are shown for different prob-
abilities of {transcendence%, crossover%,mutation%} opera-

tors: {20%, 25%, 55%} (blue dots), {20%, 20%, 30%} (orange
dots), {25%, 25%, 50%} (yellow dots), {35%, 35%, 30%} (pur-
ple dots), {40%, 25%, 35%} (green dots), and {45%, 35%, 20%}
(light blue dots). (Color figure online)

Fig. 8 Convergence to an optimal shape for 1-to-3 IR with
different probabilities of the genetic algorithm operators. The
ratio of the natural frequencies (left panel) and the mode cou-
pling coefficient (right panel) are shown for different prob-
abilities of {transcendence%, crossover%,mutation%} opera-

tors: {20%, 20%, 60%} (blue dots), {20%, 30%, 50%} (orange
dots), {40%, 20%, 40%} (yellow dots), {30%, 40%, 30%} (pur-
ple dots), {40%, 25%, 35%} (green dots), and {40%, 30%, 30%}
(light blue dots). (Color figure online)
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Fig. 9 Numerical simulations of the displacement field w(x, t)
for 1-to-2 (left) and 1-to-3 (right) IRs. The nonlinear integro-
differential equation of the curved beam [Eq. (3)] is numerically
simulated for the final designs of Figs. 5 and 6, and with initial
conditions that ensure resonant interaction between the first two

modes. The displacement field (upper panels) is projected onto
the first two modes of the beam (lower panels). Both 1-to-2 (left)
and 1-to-3 (right) IRs, the modulations in the envelope of the
first (blue) and the second (red) modes clearly show the energy
exchange due to the resonant interaction

ulations of the analytically calculated response are in
remarkable agreement with the results from the numer-
ical simulations (Fig. 10). We note that this analytical
calculation applies only to conservative systems. How-
ever, it can be modified and adjusted to describe the
dynamics of high-Q/low-dissipation systems as well
[74].

To verify that we used a stable and accurate numer-
ical simulation to solve the partial integro-differential
equation [Eq. (3)], we conduct two types of tests:

(i) We compare the power spectra of numerical sim-
ulations of the two interacting modes for different
time steps. In the left panel of Fig. 11, we show a
sample of the power spectrum of the first mode in
the vicinity of its eigenfrequency for the 1-to-2 IR
beam. Our comparative analysis reveals consistent
results across different time-step sizes. Moreover,
reducing the time-step size results in slightly nar-
rower peaks and clear sidebands (of spacing 2ωb

around the eigenfrequency) of the amplitude mod-
ulations, indicative of improved numerical solution
accuracy.

(ii) We evaluate the normalized potential energy of the
beam U/Umax after one period t = T for vary-

ing time-step sizes. Since all simulations are started
from rest conditions, the maximal potential energy
is at t = 0, i.e., U (t = 0) = Umax, and therefore,
after one period, the ratioU/Umax should approach
closer and closer to unity as we reduce the size of
the time step. In the right panel of Fig. 11, we show
the “mesh refinement” (convergence to unity with
the reduction of time step size) procedure for the
1-to-2 IR beam. As is evident from the figure, the
results converge monotonically to unity.

5 Closing remarks

We analyzed and designed curved mechanical beams
operating at IR conditions with enhanced coupling
between a pair of interacting modes. We numerically
calculated the eigenmodes of the curved beams and
performed a Galerkin projection to obtain two coupled
nonlinear ordinary differential equations for the pair
of interacting modal coordinates. After obtaining the
modal equations, we formulated an objective function
for an optimal design for the curved beam to reach IR
with enhanced coupling between the modes. We devel-
oped a simple design process using a genetic algorithm
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Fig. 10 Comparison between analytical predictions and numer-
ical simulations for 1-to-2 IR. The analytically calculated ampli-
tude modulations (envelope curves) are in excellent agreement

with the time evolution of the modal coordinates obtained from
the Galerkin projection of the numerically simulated displace-
ment field w(x, t)

Fig. 11 Numerical stability and accuracy evaluation. Left: The
power spectrum of the first mode of the beam in the vicinity of
its eigenfrequency for different time-step sizes, Δt = 2 × 10−5

(blue), Δt = 1.75 × 10−5 (red), and Δt = 1.5 × 10−5 (green).
Right: The potential energy of 1-to-2 IR beam after one period
t = T for different time-step sizes. (Color figure online)

for shape optimization of the curved beam to manip-
ulate the eigenfrequencies and modal coupling via the
geometric nonlinearities of the beam.

We provided illustrations for our analysis and design
process on the physical properties ofMEMSdevices for
the cases of 1-to-2 and 1-to-3 IRs.We validated that our
final designs are prone to the desired IRs using numeri-
cal simulations of the partial-integro-differential equa-

tion of the beam. Furthermore, we presented the analyt-
ical calculations of the resonant envelope modulations
for the case of 1-to-2 IR,which showed excellent agree-
ment with the results from the numerical simulations.

In summary, this paper presents a simple tool
for intentionally designing enhanced nonlinearity in
mechanical beams that promotes a targeted IR. While
the presented optimization tool (genetic algorithm) is
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extremely simple and perhaps not computationally effi-
cient, it is highly versatile and can optimize various
other phenomena of nonlinear dynamics.Moreover, the
presented method can also be applied when optimizing
a linearized response of a nonlinear system, which is
an essentially nonlinear problem, i.e., to what extent
the nonlinear effects are negligible. Together with our
previous study [53], we present our first steps in a more
general quest of embracing nonlinearities and consider-
ing them already in the design phase. Such an approach
can be highly beneficial and holds great promise for
the performance enhancement of MEMS and NEMS
devices.
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Appendix A: Derivation of the nonlinearly coupled
ordinary differential equations

Assuming that the motion of the beam is dominated by
its first twomodes,w(x, t) = φ1(x)q1(t)+φ2(x)q2(t),
where φ1,2 are calculated from Eq. (8) and satisfy the
orthonormality condition 〈φk, φl〉 = ∫ 1

0 φkφldx = δkl ,
we substitutew(x, t) into Eq. (3) and performGalerkin
projection onto φ1,2. This procedure results in the fol-
lowing pair of ordinary differential equations

q̈1 + ω2
1q1 − 3χ

(∫ 1

0
φ′2
1 dx

∫ 1

0
φ′
1w

′
0dx

)
q21 −

2χ

(∫ 1

0
φ′2
1 dx

∫ 1

0
φ′
2w

′
0dx

+2
∫ 1

0
φ′
1φ

′
2dx

∫ 1

0
φ′
1w

′
0dx

)
q1q2

−χ

(∫ 1

0
φ′2
2 dx

∫ 1

0
φ′
1w

′
0dx

+2
∫ 1

0
φ′
1φ

′
2dx

∫ 1

0
φ′
2w

′
0dx

)
q22

+χ

(∫ 1

0
φ′2
1 dx

)2

q31

+3χ

(∫ 1

0
φ′2
1 dx

∫ 1

0
φ′
1φ

′
2dx

)
q21q2

+χ

[∫ 1

0
φ′2
1 dx

∫ 1

0
φ′2
2 dx+2

(∫ 1

0
φ′
1φ

′
2dx

)2
]
q1q

2
2

+χ

(∫ 1

0
φ′2
2 dx

∫ 1

0
φ′
1φ

′
2dx

)
q32 = 0, (15)

q̈2 + ω2
2q2 − 3χ

(∫ 1

0
φ′2
2 dx

∫ 1

0
φ′
2w

′
0dx

)
q22

−2χ

(∫ 1

0
φ′2
2 dx

∫ 1

0
φ′
1w

′
0dx

+2
∫ 1

0
φ′
1φ

′
2dx

∫ 1

0
φ′
2w

′
0dx

)
q1q2

−χ

(∫ 1

0
φ′2
1 dx

∫ 1

0
φ′
2w

′
0dx

+2
∫ 1

0
φ′
1φ

′
2dx

∫ 1

0
φ′
1w

′
0dx

)
q21

+χ

(∫ 1

0
φ′2
2 dx

)2

q32

+3χ

(∫ 1

0
φ′2
2 dx

∫ 1

0
φ′
1φ

′
2dx

)
q22q1

+χ

[∫ 1

0
φ′2
2 dx

∫ 1

0
φ′2
1 dx+2

(∫ 1

0
φ′
1φ

′
2dx

)2
]
q2q

2
1

+χ

(∫ 1

0
φ′2
1 dx

∫ 1

0
φ′
1φ

′
2dx

)
q31 = 0, (16)

which can readily be identified with Eqs. (4)–(5).
Without going into technical details, we outline the

derivation of the normal form of the 1-to-2 and 1-to-3
IRs. Sincewe consider aweakly nonlinear system, Eqs.
(4)–(5) can be written as

q̈1 + ω2
1q1 = εF1(q1, q2),

q̈2 + ω2
2q2 = εF2(q1, q2). (17)

As the pair of equations in Eq. (17) are close to those
of a pair of linear uncoupled oscillators, we can expect
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that their solutions have a nearly sinusoidal (harmonic)
formwith unknown, and generally time-varying ampli-
tude and phase. Hence, we seek solutions in the follow-
ing complex form

q1(t)= A1(t)e
iω1t+c.c., q2(t) = A2(t)e

iω2t+c.c.,

(18)

where c.c. denotes the complex conjugate of the pre-
ceding term.Note thatwemake no restriction onq1,2(t)
here, as the observed frequenciesmaywell deviate from
ω1,2 if the complex–amplitudes A1,2 rotate in the com-
plex plane. Introducing a constraint on the time deriva-
tive of the two modes, q̇n = iωn Aneiωn t + c.c., n =
1, 2 (which is dictated by the form of this coordinate
change), we find from Eq. (17) the following equations
for the complex amplitudes

Ȧ1 = ε
e−iω1t

2iω1
F1(A1e

iω1t , A2e
iω2t ),

Ȧ2 = ε
e−iω2t

2iω2
F2(A1e

iω1t , A2e
iω2t ). (19)

Note that F1,2 contain components that are 2π/ω1 and
2π/ω2 periodic in t . Hence, representing these func-
tions by their corresponding double Fourier series yield

Ȧ1 = ε

2iω1

∑
k,l

f1k,l A
k
1e

i(k−1)ω1t Al
2e

ilω2t ,

Ȧ2 = ε

2iω2

∑
q,r

f2q,r A
q
1e

iqω1t Ar
2e

i(r−1)ω2t , (20)

where A−n � Ān and the over-bar denotes complex-
conjugation. Up to this point, the transformations are
exact and no approximations have beenmade.3 We now
use the small parameter ε to obtain approximate equa-
tions for the evolution of A1,2. As the right-hand sides
(RHS) of the pair of equations in Eq. (20) are small
(of order ε in magnitude), the variations of A1 and
A2 can be either slow (if they are large) or small (if
they are fast, e.g., with the frequencies ω1, ω2). We
restrict ourselves to large and slow variations, i.e., we
neglect all the fast and small terms on the RHS of Eq.
(20). Neglecting the terms containing the fast oscilla-
tions (einω1t , eimω2t , n,m = ±1,±2, ...) can also be

3 Note that the focus here is only on the resonant coupling terms.
Hence, we implicitly disregard the contribution of the resonant
termsof eachmode that do not stem from the coupling, alongwith
the “dispersive coupling” terms that only shift the frequency of
themodes and do not promotemodal energy exchange via ampli-
tude modulations. These can, of course, be included as needed.

considered as an averaging over the period of the oscil-
lations T1,2 = 2π/ω1,2; thus thismethod is often called
the method of averaging.

From Eq. (20), we see that for a non-zero slowly
varying RHS, which implies a resonant interaction
between the modes, the fast oscillatory terms, ω1 and
ω2 must be rationally related, e.g., ω2/ω1 = |(k −
1)/ l|, k, l ∈ Z. Note that since k and l can be arbitrary
integers, any rationally related frequencies will yield
IR. However, due to dissipation, only the lower-order
IRs will be observed in practice. For specific values of
k and l, we can determine from Eq. (20) the resonant
nonlinear coupling terms. The pair k = −2, l = 1
gives 1-to-3 IR with the lowest-order resonant terms
f1−2,1 Ā

2
1A2 and f23,0 A

3
1 on the RHS of the first and

second equations in Eq. (20), respectively. The pair
k = −1, l = 1 gives 1-to-2 IR with the lowest-order
resonant terms f1−1,1 Ā1A2 and f22,0 A

2
1 on the RHS of

the first and second equations in Eq. (20), respectively.
These terms can be readily associated with the single-
term coupling potential Ucpl = αqn1q2 that yields Eqs.
(6)–(7).

Appendix B: The frequency of oscillation for the
isolated modes

Without modal coupling, the equation ofmotion for the
isolated mode can be written as

q̈ +U ′(q) = 0. (21)

where U = ω2q2/2+ βq3/3+ γ q4/4 is the potential
energy (per unit mass) of the isolated mode. We mul-
tiply Eq. (21) by q̇ and integrate with respect to time
to obtain the conserved quantity q̇2/2 + U (q) = E ,
where E is the total energy (per unit mass) of the iso-
lated mode. From the conservation of energy, we find
that

dt = ± dq√
2(E −U (q))

, (22)

where the ± reflects the change of sign in the velocity
q̇ when crossing the turning points q(1), q(2). In half
cycle, the resonator starts its motion from the lower
turning point q(2) with a positive velocity and arrives

123



Finding an optimal shape of a curved mechanical beam for enhanced internal resonance

to the higher turning point q(1). Therefore, we canwrite

∫ T
2

0
dt =

∫ q(1)

q(2)

dq√
2[E −U (q)] . (23)

Furthermore, we can rewrite the quadratic polynomial
under the square root in the following way

2[E −U (q)] = γ

4

(
−q4 − 4β

3γ
q3 − 2ω2

0

γ
q2 + 4

γ
E

)

= γ

4
(q(1) − q)(q − q(2))

(q − q(3))(q − q(4)). (24)

Thus, from Eq. (23), we find that

T

2
=

√
2

γ

∫ q(1)

q(2)

dq√
(q(1) − q)(q − q(2))(q − q(3))(q − q(4))

.

(25)

We normalize the modal coordinate q by the largest
real root q(1), and hence,

T

2
=

√
2

q(1)γ∫ 1

q ′(2)
dq ′√

(1 − q ′)(q ′ − q ′(2))(q ′ − q ′(3))(q ′ − q ′(4))
(26)

where q ′ = q/q(1), q ′(1) = q(1)/q(1) = 1, q ′(2) =
q(2)/q(1), q ′(3) = q(3)/q(1) and q ′(4) = q(4)/q(1). The
solution of the elliptic integral in Eq. (26) is given by
(cf. Ref. [73], Eq. (259.00))

T = 4g′
√

2

γ
K (k′), (27)

where

k′2 = 1

4

(q ′(1) − q ′(2))2 − (z′(1) − z′(2))2

z′(1)z′(2)
,

z′(1)2 = (q ′(1) − R{q ′(3)})2 + (I{q ′(3)})2,
z′(2)2 = (q ′(2) − R{q ′(3)})2 + (I{q ′(3)})2,

g′ = 1√
(z′(1)z′(2))

, (28)

K (k′) is an elliptic integral of the first kind, and R{·}
and I{·} are the real and imaginary parts of {·}, respec-
tively. Thus, by switching back to the non-normalized
variables q, q(1), q(2), q(3), and q(4), we find that the
fundamental frequency is given by

Ω(E) = 2π

T
= π

2K (k)

√
γ

2
z(1)z(2). (29)

Appendix C: Supplementary figures

See Figs. 12, 13 and 14

Fig. 12 Shape functions of the optimal 1-to-2 IR beams that obtained for probabilities combination of {20%, 30%, 50%} (left) and
combination of {30%, 40%, 30%} (right)
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Fig. 13 Comparison between the 1-to-2 IR beam of generation
50 (left) and 1-to-2 IR optimal beam of generation 89 (right).
The upper panels are the energy-frequency backbone curves of
the first and second modes with the frequency crossing condi-

tions, and the lower panels are the projections of the numerical
simulations of the displacement field w(x, t) onto the first two
modes of the beam

Fig. 14 Projections of the numerical simulations of the displace-
ment fieldw(x, t) onto the first twomodes of the beam for 1-to-2
IR with non-trivial initial conditions in a single mode. Left: the
non-trivial initial condition is only on the first mode while the
secondmode is set to zero initial amplitude. Right: the non-trivial

initial condition is only on the second mode while the first mode
is set to zero amplitude. The first (blue) and the second (red)
modes clearly show the energy exchange due to the resonant
interaction for both cases. (Color figure online)
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Appendix D: Analytical calculation of resonant
envelope modulations

We present here a detailed analysis of the amplitude
modulations for the 1-to-2 IR (a similar analysis can
be conducted for the 1-to-3, see [58]). By making
the ansatz q1(t) = A1(t)eiω1t + cc and q2(t) =
A2(t)e2iω1t + cc, where cc denotes the complex-
conjugate of the preceding term, and applying the
method of averaging [55], we obtain from Eqs. (12)–
(13) the following pair of complex-amplitude equations

Ȧ1 = 3iγ1
2ω1

|A1|2A1 + iα

ω1
A∗
1A2 + 2iη

ω1
A1|A2|2, (30)

Ȧ2 = −iΔω2A2 + 3iγ2
4ω1

|A2|2A2 + iα

4ω1
A2
1

+ iη

ω1
|A1|2A2, (31)

where Δω2 = 2ω1 − ω2 is the frequency mismatch
between the modes. We normalize the complex ampli-
tude equations by �1,2A1,2n = A1,2, where �1 =
31/4ω1

√
2/γ1 and �2 = 31/4ω1

√
1/γ1, the time by

τ = ω1t , and obtain the following rescaled equations

A′
1n = 3

√
3i |A1n|2A1n + i

α

ω1

(√
3

γ1

) 1
2

A∗
1n A2n

+ 2
√
3iη

γ1
A1n|A2n|2 = −i

∂H
∂A∗

1n
, (32)

A′
2n = −iΔω2n A2n + 3i

√
3

4

γ2

γ1
|A2n|2A2n

+ i
α

2ω1

(√
3

γ1

) 1
2

A2
1n + 2

√
3iη

γ1
|A1n|2A2n|

= −i
∂H

∂A∗
2n

, (33)

where Δω2n = Δω2/ω1, and

H = Δω2n|A2n|2 − 3
√
3

2
|A1n|4 − 3

√
3

8

γ2

γ1
|A2n|4

− α

2ω1

(√
3

γ1

)1/2 (
A∗
1n

2A2n + A2
1n A

∗
2n

)

− 2
√
3η

γ1
|A1n|2|A2n|2 (34)

is the averaged Hamiltonian of the system which, by
construction, is a conserved quantity. The second con-
served quantity is an analog of theManly-Rowe invari-
ant that has the form of M = I + 2|A2n|2, where
I = |A1n|2 is the action variable. We define the phase
difference ψ = 2 arg(A1n) − arg(A2n) as the angle
variable, and rewrite Eqs. (32)–(33) using action-angle
variables

I ′ = ∂H
∂ψ

= α√
2ω1

(√
3

γ1

)1/2

(M − I )1/2 I sinψ,

(35)

ψ ′ = −∂H
∂ I

= Δω2n

2
+ 3

√
3I − 3

√
3

16

γ2

γ1
(M − I )

+ α√
2ω1

(√
3

γ1

)1/2
2M − 3I

2(M − I )1/2
cosψ

+
√
3η

γ1
(M − 2I ). (36)

The dynamics of Eqs. (35)–(36) can be mapped onto
the motion of a particle trapped in a potential well [58].

1

2
I ′2 +Ueff(I ) = 0,

Ueff(I ) = −
√
3α2

4γ1ω2
1

(M − I )I 2

+ 1

2

[
H − Δω2n

2
(M − I ) + 3

√
3

2
I 2

+3
√
3

32

γ2

γ1
(M − I )2 +

√
3η

γ1
I (M − I )

]2

.

(37)

The potential Ueff(I ) is a quartic polynomial in I
parameterized by M and H. It can have a single well
or two wells separated by a local maximum [58]. In the
case where the local maximum of the double potential
well lies above zero, the equationUeff(I ) = 0 has four
real solutions I1 > I2 > I3 > I4, where depending on
the initial condition I (0), the “particle trapped in the
potential well” I (τ ) oscillates either between I1 and I2,
or between I3 and I4. In the first case, the oscillations
I (τ ) between I1 and I2 can be described in terms of
Jacobi elliptic functions [73]

I (u) = (I1 − I2)I3 sn2(u|m) − (I1 − I3)I2
(I1 − I2) sn2(u|m) − (I1 − I3)

,
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u = τ

√
3(48γ1+3γ2−32η)2

1024γ 2
1

2√
(I1− I3)(I2− I4),

m = (I1 − I2)(I3 − I4)

(I1 − I3)(I2 − I4)
. (38)

From the above analytical solution, we find that q1 =
2�1 I 1/2 cos(ω1t + arg(A1n)) and q2 = 21/2�2(M −
I )1/2 cos(2ω1t + arg(A2n)).
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