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A B S T R A C T

This study investigates electro-hydrodynamic (EHD) and electro-thermo-hydrodynamic (ETHD)
phenomena in dielectric liquids, and focusses on charge injection as a source of unipolar
charges. The studied configuration consists of a hot spherical electrode placed in the center of a
cold cubic enclosure, and is numerically simulated using the direct forcing immersed boundary
(IB) method. Flow characteristics for both EHD and ETHD flows within this configuration
are thoroughly analyzed, both quantitatively and qualitatively, across a representative range
of operating parameters. Analyzing ETHD flows results in a more than threefold increase in
heat flux from the hot embedded electrode compared to natural convection alone. This study
highlights both the similarities and the differences in flow and heat transfer characteristics
between the realistic 3𝐷 configuration and its 2𝐷 counterpart, paving the way for further
application of the direct forcing IB method in the analysis of EHD and ETHD flows typical
of realistic configurations.

1. Introduction

Electro-hydrodynamics (EHD) and electro-thermo-hydrodynamics (ETHD) are two branches of fluid mechanics, both governed
by the interactions between electric fields and the fluid medium. In these phenomena, electric fields act on induced charges or
charge distributions within the fluid, creating body forces that drive fluid motion. Additionally, in both cases, these electric fields
can be modulated or influenced by external factors, such as temperature gradients in the case of ETHD, resulting in complex flow
behaviors. Both EHD and ETHD have laid the foundation for numerous engineering advances. For example, EHD principles have been
employed in the design of air ionizers [1], electrohydrodynamic thrusters [2], and commercial printer technologies [3]; ETHD flow
analysis has been applied to improve solar energy systems [4] and to enhance the efficiency of thermal heat exchange in cooling [5],
boiling and condensing [6], as well as drying and evaporating [7] processes, to name just a few. Most of the above applications
use dielectric liquids as the medium between the two electrodes due to their high breakdown voltage, good heat transfer properties
and chemical stability. For this reason, the current study also uses dielectric liquids for performance analysis. Both EHD and ETHD
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can only exist in the presence of free charge carriers, which can be generated by various mechanisms, including charge injection
rom the electrode and the induction of electric charges by electric field dissociation or by the variation of electrical conductivity.
n dielectric liquids the injection mechanism is dominant in comparison with other free charge sources [8]. Hence, in this work we
xclusively consider charge injection as a only source of uni-polar charges.

One of the most promising applications of ETHD phenomena is the enhancement of heat transfer from heated surfaces immersed
within the fluid flow, which offers a distinct advantage over natural convection [9]. The key idea is to create sufficiently high
electrical forces throughout the flow field to overcome the buoyancy force acting in the opposite direction to the temperature
gradient, so that the unidirectional thermal plume is replaced by a series of electrically driven plumes distributed over the entire
surface of a cooled electrode, immersed into a dielectric fluid. Experimental studies investigating the potential of ETHD for improving
heat transfers from immersed surfaces are scarce, and limited to simple geometries. These include the enhancement of heat transfer
rate between parallel plates [10], on an upward facing plate [11] and on the surface of a copper rod [12], as well as the enhancement
f nucleate boiling on the surface of small injecting electrode [13].

In a number of research works, numerical analysis has been used to gain a better understanding of the potential of using ETHD
to improve the heat transfer both in 2𝐷 and 3𝐷 geometries. Regarding 2𝐷 analysis in canonical geometries, worth mentioning
are [14–20], which investigate the characteristics of ETHD flows in an enclosures and between parallel plates. Specifically, Yang
t al. [14] investigated the potential of non-uniform electric fields in enhancement of heat transfer at low Rayleigh numbers. Wu

and Traoré [15] extended this investigation to higher Rayleigh numbers with dielectric fluids. Wu et al. [16] further explored heat
ransfer enhancement in ETHD by introducing additional electric fields in Rayleigh–Bénard convection. Wang et al. [17] simulated

ETHD with uniform and sinusoidal boundary conditions, finding non-uniform temperatures create complex flows. Selvakumar
et al. [18] studied 2D ETHD convection, focusing on unipolar ion injection effects. Son and Park [19] demonstrated significant heat
transfer enhancement using alternately arranged electrodes on vertical walls in a square cavity, while Liang et al. [20] investigated
the complex interactions of electric fields with double-diffusive convection in a rectangular cavity, showing improved heat and mass
transfer rates.

An evaluation of the effect of conjugate solid–liquid heat transfer on the heat transfer rate appears in [21], who found that
the heat transfer rate decreases when the effect of thermal conduction within a solid wall of finite thickness is taken into account.
Numerical simulations of more complex 2𝐷 configurations can be found in [22] focused on the role of carbon nanotubes and electric
fields in enhancing heat transfer, while Li et al. [23] conducted parametric studies on oscillatory electro-thermo-convective flows,
which investigate the ETHD flows inside concentric and eccentric circular annuli, respectively. Additionally, studies by [24–27]
employed the lattice Boltzmann method to analyze ETHD flows between the walls of a square enclosure and various electrode
configurations, including a circular electrode, elliptic electrode, and a pair of cylindrical electrodes. The study published in [27]
was then extended in [28] to the analysis of non-Newtonian charge carriers, focussing on how the hysteresis loop depth depends on
he power-law index of the fluid. In relation to 3𝐷 analysis, the major research effort has been in studying transition to unsteadiness

in a dielectric liquid separating two parallel plates [29] and in enhancing the mixing of the flow species in an infinitely long
multichannel [30]; these to the best of the authors’ knowledge, are the only works addressing three-dimensional electro-driven
lows.

The goal of the present study is twofold. Our first objective is to demonstrate the capabilities of the direct forcing immersed
boundary (IB) method for addressing general 3𝐷 EHD and ETHD flows. The direct forcing IB approach is not a standalone
methodology and should be implemented on top of a more basic solver for the governing equations, for example, standard finite
volume method or lattice Boltzmann approach, see e.g. [31–34].

Remarkably, to date, the capabilities of the direct forcing IB approach in ETHD flows have not been fully exploited, apart from
he study by [26], which used the IB-lattice Boltzmann method for analyzing ETHD flows in 2D configurations. The currently

developed methodology, which constitutes an extension of our recently developed framework [35] to electro-driven flows, bridges
the above gap. To do this, we couple the incompressible Navier–Stokes and energy equations with the Poisson–Nernst–Planck (PNP)
and the electrostatic system of equations governing the transport of charged species and the spatial distribution of electric potential,
respectively. The overall system of equations is solved in a segregated manner, while coupling between all fields is achieved using
the SIMPLE algorithm and the internal PNP iterations. A pseudo-time technique is employed to facilitate the solution of the large
Poisson system of equations for the electric potential.

Our second objective is to investigate both the EHD and the ETHD flows developing between the hot spherical electrode placed
in the center of a cubic enclosure filled with dielectric liquid subject to the unipolar injection and voltage. Here our focus is on
the investigation of the distribution of temperature, charge density and the vortex structures developing over the entire range of
operating parameters, as well as on careful examination of the mechanism of transition to unsteadiness of both EHD and ETHD flows.
The capabilities of the ETHD flow for increasing the rate of heat transfer from the surface of a hot spherical electrode are discussed,
and the fundamental differences between the heat transfer mechanism typical of the currently investigated 3𝐷 configuration and
its 2𝐷 counterpart are highlighted.

2. Governing equations

We consider the ETHD flow, which combines the phenomena observed in fluid mechanics, heat transfer, and electro-kinetics.
The flow is governed by the system of continuity, momentum, energy, electro-static and charge density conservation equations that
read:
∇̃ ⋅ �̃� = 0, (1)
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𝜕(𝜌𝑜�̃�)
𝜕 𝑡 + ∇̃ ⋅ (𝜌𝑜�̃��̃�) = −∇̃�̃� + 𝜌𝑜𝜈∇̃2�̃� + 𝑞∇̃�̃� + �̃�𝒈, (2)

𝜕𝜃
𝜕𝑡

+ ∇̃ ⋅ (�̃�𝜃) = 𝜅
𝜌𝑜𝐶𝑝

∇̃2𝜃 , (3)

∇̃2�̃� = − 𝑞
𝜀
, (4)

𝜕 ̃𝑞
𝜕𝑡

+ ∇̃ ⋅ (𝑞�̃� −𝐾 ̃𝑞∇̃�̃� −𝐷∇̃𝑞) = 0, (5)

where �̃� denotes the velocity vector [�̃�, �̃�, �̃�], �̃� is the hydrodynamic pressure, 𝜃 refers to the temperature field, �̃� is the electric
potential, and 𝑞 is the charge density field. The effects of gravity and electric fields are accounted for as the source terms in the
momentum equation. 𝐾 denotes the ionic mobility, �̃� is the fluid density, 𝜈 represents the kinematics viscosity, 𝜅 is the thermal
conductivity, and 𝜀 is the electrical permittivity. 𝒈 is the gravity vector, 𝐷 refers to the molecular diffusion coefficient, and 𝑡
is the time. 𝜌0, represents the density field corresponding to the reference temperature, 𝜃0, and 𝛽 is the coefficient of thermal
expansion. Note that we currently focus only on the impact of the Coulomb force since for incompressible flows the dielectric and
the electrostriction forces can be included within the pressure term [36]. We non-dimensionalize the above governing equations
sing suitable reference scales, as given below:

𝒙 = �̃�
𝐻
, 𝑡 = 𝑡 𝜈

𝐻2
, 𝒖 = �̃�𝐻

𝜈
, 𝑝 = �̃� 𝐻

2

𝜌0𝜈2
, 𝜙 =

�̃�
𝛥𝜙

, 𝑞 =
𝑞
𝑞0
,

𝜌 =
�̃�
𝜌0
, 𝜃 =

𝜃 − 𝜃0
𝛥𝜃

,
(6)

where 𝒙 corresponds to the Cartesian coordinates vector, and 𝐻 and 𝑞0 refer to the characteristic length and the charge density
scales, respectively. 𝛥𝜙 denotes the potential difference 𝜙0 − 𝜙1, and 𝛥𝜃 is the temperature difference 𝜃ℎ − 𝜃𝑐 , where 𝜃𝑐 and 𝜃ℎ are
the cold and hot temperatures, respectively. We choose a velocity scale based on the kinematic viscosity, which is arguably the
physically correct choice of a reference velocity for electro-thermally driven flows. Other choices of velocity scale are also possible,
although they would result in a different form of the non-dimensional governing equations. We next formulate the non-dimensional
governing equations as:

∇ ⋅ 𝒖 = 0, (7)

𝜕𝒖
𝜕 𝑡 + ∇ ⋅ (𝒖𝒖) = −∇𝑝 + ∇2𝒖 − 𝑇 2

𝑀2
𝐶 𝑞∇𝜙 + 𝑅𝑎

𝑃 𝑟 𝜃 ⃗𝑒𝑧, (8)

𝜕 𝜃
𝜕 𝑡 + ∇ ⋅ (𝒖𝜃) = 1

𝑃 𝑟∇
2𝜃 , (9)

∇2𝜙 = −𝐶 ⋅ 𝑞 , (10)

𝜕 𝑞
𝜕 𝑡 + ∇ ⋅ (𝒖𝑞) = �̂�∇2𝑞 + ∇ ⋅ (𝑞 𝑇

𝑀2
∇𝜙). (11)

The non-dimensional groups appearing in the equations are the Prandtl number, 𝑃 𝑟, the Rayleigh number, 𝑅𝑎, and the electric
ayleigh number, 𝑇 defined as:

𝑅𝑎 =
𝑔 𝛽 𝛥𝜃 𝐻3

𝜅 𝜈 , 𝑃 𝑟 = 𝜈
𝛼0
, 𝑇 =

𝜀𝜙0
𝜌𝜈 𝐾 . (12)

Additional non-dimensional coefficients appearing in equations are the injection strength number, 𝐶, the mobility number 𝑀 , and
he molecular diffusion coefficient, �̂� defined as:

𝐶 =
𝑞0𝐻2

𝜀𝜙0
, 𝑀 = 1

𝐾

√

𝜀
𝜌
, �̂� = 𝐷

𝜈
. (13)

3. Numerical methodology

This section provides a brief overview of the discretization of the governing equations and the numerical algorithm used in the
current work for the solution of the governing equations. The spatial discretization employs a finite volume method on a staggered
grid. The 𝑢, 𝑣, and 𝑤 velocity component fields are staggered by a half grid cell in the horizontal, spanwise and vertical directions,
respectively, with respect to the scalar fields. A SIMPLE method is used for the pressure-velocity coupling. All the linear terms are
treated implicitly, while all the non-linear terms, including the convective flux, electric body force and electro-migration terms,
are taken explicitly from the previous time step. We use the standard second order central difference scheme for discretizing all
the diffusive, electric body force and electro-migration terms, while all the convective fluxes are discretized by utilizing the second
order upwind scheme. A second order backward finite difference scheme is used for the time discretization.

The algorithm sequence for advancing by a single time step is summarized as follows:
3 
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Fig. 1. (a) Schematic diagram of a cubic enclosure hosting a sphere placed in its center; (b) mid cross-section taken at 𝑋 = 0.5 plane with all the boundary
conditions.

1. Initialization of 𝒖, 𝑝, 𝜙, 𝜃, and 𝑞 fields
2. Solution of the Poisson–Nernst–Planck (PNP) equations

(a) Solution of the electro-static equation formulated in terms of the electric potential ∇2𝜙 = −𝐶 ⋅ 𝑞𝑛 (see Eq. (10))
(b) Solution of the charge density transport equation 3𝑞𝑛+1

2𝛥𝑡 − �̂�∇2𝑞𝑛+1 = −∇ ⋅ (𝒖𝑞)𝑛 + ∇ ⋅ (𝑞 𝑇
𝑀2 ∇𝜙)𝑛 +

4𝑞𝑛−𝑞𝑛−1
2𝛥𝑡 (see Eq. (11))

(c) Performing internal PNP iterations until the convergence of 𝜙 and 𝑞𝑛+1 is achieved by:

i. assigning 𝑞𝑛+1 obtained upon completion of (b) to the 𝑅𝐻 𝑆 of (a)
ii. assigning 𝜙 obtained upon completion of (a) to the ∇ ⋅ (𝑞 𝑇

𝑀2 ∇𝜙)𝑛 term in the RHS of (b)

3. Solution of the energy equation 3𝜃𝑛+1
2𝛥𝑡 − 1

𝑃 𝑟∇2𝜃𝑛+1 = −∇ ⋅ (𝒖𝜃)𝑛 + 4𝜃𝑛−𝜃𝑛−1
2𝛥𝑡 (see Eq. (9))

4. Solution of the momentum and continuity equations by applying the SIMPLE method [37] for the pressure-velocity coupling:

(a) 3𝒖∗
2𝛥𝑡 − ∇2𝒖∗ = −∇𝑝𝑛 − 𝑇 2

𝑀2 𝐶 𝑞∇𝜙 + 𝑅𝑎
𝑃 𝑟 𝜃𝑛+1𝑒𝑧 − ∇ ⋅ (𝒖𝒖)𝑛 + 4𝒖𝑛−𝒖𝑛−1

2𝛥𝑡
(b) ∇2𝑝′ = 3

2𝛥𝑡∇ ⋅ 𝒖∗

(c) 𝑝𝑛+1 = 𝑝𝑛 + 𝑝′, 𝒖𝑛+1 = 𝒖∗ + 𝒖′

5. Proceed to step 2.

All the equations listed in steps 2–4 incorporate either the Helmholtz or the Stokes operators; this makes it possible to solve the whole
system by utilizing the direct tensor product factorization (TPF) based solver [38] by employing it successively for resolving each
field. Note also that the above formulation constitutes the most general framework, making it possible to address electro-thermo-
convection phenomena subject to applying specific boundary conditions. In the following we detail the configuration addressed in
the framework of the current study, as well as the IB method used to impose the relevant boundary conditions.

4. Physical model

An EHD flow within a cold cubic enclosure of unity side length hosting a hot sphere of radius 𝑅 = 0.2 placed at the cavity center
is considered (see Fig. 1a). This configuration enables the analysis of complex interactions between electric and buoyancy fields,
typical of a spherically shaped injecting electrode placed within a cubic enclosure filled with a dielectric liquid such as mineral oil.
The enclosure walls constitute completely open electrodes which are held at constant cold temperature 𝜃 = 0 and constant electric
potential 𝜙 = 0. The surface of the sphere is considered to be an autonomous injecting electrode held at constant hot temperature
𝜃 = 1 and constant electric potential 𝜙 = 1. Non-slip boundary conditions are applied for all the velocity components on all the
enclosure and the sphere surfaces. A full set of the applied boundary conditions is given in Fig. 1b.
4 
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5. Immersed boundary formulation

5.1. Governing equations

The boundary conditions on the surface of the sphere are enforced by utilizing the direct forcing IB method [35,39]. Following
the formalism of the direct forcing IB method, the problem is discretized on two independent grids, namely, the Eulerian and the
Lagrangian grids. The Eulerian grid constitutes a structured grid on which the governing equations are solved. The Lagrangian grid
is determined by a series of discrete points uniformly distributed over the sphere surface. The impact of the body surface on the
surroundings is reflected by applying the dynamic conditions which appear in the governing equations as additional sources. The
sources placed at each Lagrangian point play the role of Lagrange multipliers and their values are unknown a priori. To achieve the
closure the kinematic constraints of no-slip and the prescribed values of temperature, electric potential and concentration on the
sphere surface are added to the overall system. The extended set of equations is given by:

∇ ⋅ 𝒖 = 0, (14)

𝜕𝒖
𝜕 𝑡 + ∇ ⋅ (𝒖𝒖) = −∇𝑝 + ∇2𝒖 − 𝑇 2

𝑀2
𝐶 𝑞∇𝜙 + 𝑅𝑎

𝑃 𝑟 𝜃 ⃗𝑒𝑧 +𝑹[𝑭𝒖], (15a)

𝑰(𝒖) = 𝑼𝛤 , (15b)

𝜕 𝜃
𝜕 𝑡 + ∇ ⋅ (𝒖𝜃) = 1

𝑃 𝑟∇
2𝜃 +𝑹[𝐹𝜃], (16a)

𝑰(𝜃) = 𝛩𝛤 , (16b)

∇2𝜙 = −𝐶 ⋅ 𝑞 +𝑹[𝐹𝜙], (17a)

𝑰(𝜙) = 𝛷𝛤 , (17b)

𝜕 𝑞
𝜕 𝑡 + �̂�∇2𝑞 = ∇ ⋅ (𝑞 𝑇

𝑀2
∇𝜙 − 𝑞𝒖) +𝑹[𝐹𝑞], (18a)

𝑰(𝑞) = 𝑄𝛤 , (18b)

where 𝑼𝛤 represents the non-slip boundary condition, 𝛩𝛤 , 𝛷𝛤 , and 𝑄𝛤 correspond to the temperature, electric potential and charge
ensity values, respectively, preset on the surface of immersed body. I and R correspond to the interpolation and regularization
perators, respectively, utilized for conveying the information between the Lagrangian and Eulerian grids:

𝑓𝑖(𝒙) = 𝑹[𝐹𝑘(𝑿)] = ∫𝑉𝑠
𝐹𝑘(𝑿) ⋅ 𝛿(𝒙 −𝑿)𝑑 𝑉𝑆 , (19a)

𝛹𝑘(𝑿) = 𝑰[𝜓𝑖(𝑿)] = ∫𝛺
𝜓𝑖(𝑥) ⋅ 𝛿(𝑿 − 𝒙)𝑑 𝑉𝛺 , (19b)

where 𝐹𝑘 corresponds to the scalar volumetric quantity from the list of {𝐹𝑢𝑥 , 𝐹𝑢𝑦 , 𝐹𝑢𝑧 , 𝐹𝜃 , 𝐹𝜙, 𝐹𝑞} taken in the 𝑘th Lagrangian point
f the surface of the immersed body, and 𝜓𝑖 corresponds to the 𝑖th Eulerian variable from the list of {𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝜃, 𝜙, 𝑞}. 𝑉𝑆 and 𝑉𝛺

correspond to the finite volumes confining Lagrangian and Eulerian variables, respectively. These volumes should be approximately
the same to provide well conditioning of the governing operators. Introducing next the local coordinates of 𝑘th Lagrangian point
(𝜖𝑘, 𝜂𝑘, 𝜁𝑘) Eqs. (19) can be reformulated in a discrete form as:

𝑓𝑖(𝒙) = 𝛥𝑥3
∑

𝑘
(𝐹𝑘(𝑿))𝛿(𝜖𝑘 − 𝑥𝑖)𝛿(𝜂𝑘 − 𝑦𝑖)𝛿(𝜁𝑘 − 𝑧𝑖), (20)

𝛹𝑘(𝑿) = 𝛥𝑥3
∑

𝑖
(𝜓𝑖(𝑿))𝛿(𝑥𝑖 − 𝜖𝑘)𝛿(𝑦𝑖 − 𝜂𝑘)𝛿(𝑧𝑖 − 𝜁𝑘). (21)

Here 𝛿(𝑟) is the one dimensional discrete Dirac delta function introduced in [40]:

𝛿(𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
6𝛥𝑟

[

5 − 3 |𝑟|
𝛥𝑟 −

√

−3(1 − |𝑟|
𝛥𝑟 )

2 + 1
]

1
2𝛥𝑟 ≤ |𝑟| ≤ 3

2𝛥𝑟.

1
3𝛥𝑟

[

1 +
√

−3( |𝑟|𝛥𝑟 )
2 + 1

]

|𝑟| ≤ 0.5𝛥𝑟,

0 otherwise,

(22)

where 𝛥𝑟 is the cell width in the 𝑟 direction. The above delta function has a compact support of only three grid cells in each direction.
It has been specifically designed for performing calculations on staggered grids and has gained popularity over recent years [41–
43]. To achieve the best accuracy of the results and to avoid ill-conditioning of the operators governing Eqs. (15)–(18), the spacing
etween neighbor Lagrangian points on the surface of the immersed body should be close to the grid size of the corresponding

Eulerian grid. To map the spherical surface we used the non-iterative method of Leopardi [44]. Note that each set of the governing
equations with the corresponding dynamic and kinematic constrains corresponding to the continuity and momentum equations
(Eqs. ((14)–(15)a–b)), energy equation (Eqs. ((16)a-b)), electrostatic potential equation (Eqs. ((17)a–b)), and space charge density
quation (Eqs. ((18)a–b)) and the corresponding boundary conditions constitute a closed set of equations solved by the methodology
escribed in the next section.
5 
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5.2. Solution methodology

The governing Eqs. (14)–(18) were discretized and solved in the same sequence as that described in Section 3. All the additional
nknowns were treated implicitly with the fields governed by the corresponding transport equations; these additional unknowns, in
act, appeared as a result of applying the IB method and due to the regularized volumetric sources. The strategy, which is similar
o that applied in our previous study [35], is as follows. Each pair of Eqs. ((15), (16), (18)) can be compactly reformulated in a
lock-matrix form as:

[

𝑯𝒖∗ ,𝜃 ,𝑞 𝑹

𝑰 0

] [
𝒖∗, 𝜃 , 𝑞

𝑭𝒖∗ , 𝐹𝜃 , 𝐹𝑞

]

=

[

𝑅𝐻 𝑆𝑛,𝑛−1𝒖∗ ,𝜃 ,𝑞
𝑼𝛤 , 𝛩𝛤 , 𝑄𝛤

]

, (23)

where H is the Helmholtz operator acting on 𝒖∗, 𝜃, and 𝑞 fields. Note that the non-solenoidal field 𝒖∗, obtained in this way is then
rojected to the divergence free subspace by a standard SIMPLE method, as detailed in the previous section. The system of Eqs. (17)

governing the electrostatic potential is stationary, and therefore, after replacing the Helmholtz operator H by the Laplacian operator
L it can also be reformulated in the block-matrix form as:

[

𝑳 𝑹
𝑰 0

] [
𝜙
𝐹𝜙

]

=
[

𝑅𝐻 𝑆𝜙
𝛷𝛤

]

. (24)

We next apply the Schur complement approach to analytically decompose system (23) into:

[𝑭𝒖∗ , 𝐹𝜃 , 𝐹𝑞] = [𝑰 𝑯−1
𝒖∗ ,𝜃 ,𝑞𝑹]−1[𝑰 𝑯−1

𝒖∗ ,𝜃 ,𝑞𝑅𝐻 𝑆𝑛,𝑛−1𝒖∗ ,𝜃 ,𝑞 − 𝑼𝛤 , 𝛩𝛤 , 𝑄𝛤 ], (25a)

[𝒖∗, 𝜃 , 𝑞] = 𝑯−1
𝒖∗ ,𝜃 ,𝑞[𝑅𝐻 𝑆𝑛,𝑛−1𝒖∗ ,𝜃 ,𝑞 −𝑹[𝑭𝒖∗ , 𝐹𝜃 , 𝐹𝑞]], (25b)

and system (24) into:

𝐹𝜙 = [𝑰 𝑳−1𝑹]−1[𝑰 𝑳−1𝑅𝐻 𝑆𝑛,𝑛−1𝜙 −𝛷𝛤 ], (26a)

𝜙 = 𝑳−1[𝑅𝐻 𝑆𝑛,𝑛−1𝜙 −𝑹𝐹𝜙]. (26b)

In the next step we incorporate the TPF based solver [38] for the purpose of performing matrix–vector products of the inverse
elmholtz and Laplacian operators (see Ref. [35] for more details) and successively solve Eqs. (25)–(26) to obtain all the unknown

fields. Lastly, with regard to the solution of Eq. (26), for realistically large grid resolutions (more than 200 grid cells in each
direction) we obtain an extremely ill-conditioned matrix [𝑰 𝑳−1𝑹], which leads to prohibitively high memory consumption or to
severe convergence problems when further attempting to calculate 𝐹𝜙 by either direct (𝐿𝑈 decomposition) or iterative (BicgStab)
methods. It is remarkable that this problem does not show up when performing the solution of Eqs. (25); this can be explained by
its time dependance, such that a sufficiently small time step increases the main diagonal of the system and improves significantly
its condition number. For this reason a pseudo time approach is applied for the solution of the system of Eqs. (24). The key idea is
to introduce an additional time dependant parameter 𝜙 as follows:

𝜙𝑘+1

𝛥𝜏
+𝑳(𝜙𝑘+1) −𝑹(𝐹𝜙) =

𝜙𝑘

𝛥𝜏
− 𝐶 ⋅ 𝑞𝑛, (27a)

𝑰(𝜙𝑘+1) = 𝛷𝛤 (𝑋). (27b)

A series of iterations is then performed to reduce the value of the difference between 𝜙𝑘+1 and 𝜙𝑘 at each subsequent iteration. The
iterations, typically ranging from 6 to 8 in number, are repeated until the steady state solution of the original problem is obtained
with the required degree of accuracy.

6. Verification study

6.1. EHD flow: circular cylinder placed in the center of square cavity

We examine two-dimensional EHD flow regime developing around a circular cylinder placed in a square enclosure. The
computational domain is discretized by uniform Cartesian 300 × 300 grid. The numerical simulations are performed for 𝑀 = 10,
𝐷 = 10−4, 𝐶 = 10 values, and three values of electric Rayleigh numbers equal to 𝑇 = 100, 𝑇 = 300, and 𝑇 = 600. The obtained
esults are presented in Fig. 2(a, b, e, f, i, j) in terms of the of charge density and streamline distributions.

It can be seen that the obtained charge density and flow field characteristics exhibit symmetry with respect to both the horizontal
and vertical centerlines, as well as the main diagonals of the domain. Although the flow field retains a similar structure of four pairs
f convective cells across all values of 𝑇 , the charge density distribution shows notable differences. At 𝑇 = 100, the viscous force
ampens the convection induced by the Coulomb force, resulting in weak convection. In this case, ions are primarily transported
y the electric field through the drift mechanism, leading to high values of ion concentration in the cylinder vicinity and a smooth
pace charge distribution across the main region. For 𝑇 = 300, the Coulomb force strengthens, inducing a more intense radial motion
ith four pairs of counter-rotating cells. The present contours of charge density and flow field (Fig. 2) show a qualitatively good
greement with the corresponding results reported in [24]. The slight difference between the currently obtained and the reported

contours of charge density and stream lines distributions can be attributed to the fact that Luo et al. [24] did not provide the color
6 
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Fig. 2. A comparison between the currently obtained charge density and streamline distributions (two left columns) with the corresponding data reported in [24]
(two right columns). The distributions obtained for 𝑅𝑎 = 105 at (a, b) 𝑇 = 100; (e, f) 𝑇 = 300; (i, j) 𝑇 = 600 are compared with the corresponding data reported
in [24].
Source: Reproduced with permission from K. Luo et al. heat transfer enhancement in electro thermo-convection in a square enclosure with an inner circular
cylinder, Int. J. Heat Mass Transfer 113, 1070–1085 (2017).
© 2017 Elsevier.

bar values in their manuscript. At the same time, a quantitative comparison of the 𝑉𝑚𝑎𝑥
𝑅𝑒𝐸

in a computational domain, as presented
in Table 1, agrees well with the results reported in Luo et al. [24] for all the electric Rayleigh numbers, successfully verifying the
currently developed approach.

6.2. ETHD flow: circular cylinder placed in the center of square cavity

We consider the case of electro-thermo-convection in the same two-dimensional configuration discussed in the previous section.
In this study, we investigate the interplay between Coulomb and gravitational forces, ranging from weak to strong Coulomb force
regimes. Although simulations were conducted for several values of 𝑇 , we focus on only two test cases at 𝑇 = 150 and 𝑇 = 300 for
the sake of concision. Additionally, since the primary goal is to verify the algorithm, we use a relatively fine 300 × 300 Cartesian
mesh and a constant 𝛥𝑡 = 10−7 for all the simulations. Numerical simulations are conducted with 𝑃 𝑟 = 10, 𝑀 = 10, �̂� = 2 × 10−4,
𝑅𝑎 = 105, and an injection strength number 𝐶 = 10. The distributions of charge density, temperature, and stream function for
𝑇 = 100 and 𝑇 = 300 are shown in Fig. 3.

At 𝑇 = 150 the flow structure in Fig. 3(a) reveals two large convection cells, which is consistent with the findings in existing
literature [24]. We also observe that the smooth charge distribution (Fig. 3(a)) does not generate significant radial electro-
convection, in agreement with the findings of [24] at the same value of 𝑇 . As the Coulomb force becomes sufficiently strong at
7 
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Table 1
The ratio of the maximum fluid velocity to the electric Reynolds
number 𝑉𝑚𝑎𝑥

𝑅𝑒𝐸
as a function of electric Rayleigh number, 𝑇 , where

𝑅𝑒𝐸 = 𝑇 ∕𝑀2.
T Present Ref. [24]

100 0.224 0.215
200 1.964 2.062
300 7.269 7.191
400 10.421 10.338
600 15.331 15.071

𝑇 = 300, it induces radial convection, resulting in four pairs of counter-rotating convective cells, as shown in Fig. 3(c). Additionally,
he charge distribution exhibits four distinct void regions in the domain. It is observed that heat is transported through injection-

induced radial convection, which accounts for the similar plume structures observed in both the temperature and charge density
istributions, in agreement with those reported by Luo et al. [24]. At 𝑇 = 300, the charge distribution clearly exhibits symmetry

breaking with respect to both diagonals. Furthermore, the temperature distribution preserves its symmetries similarly to results
rovided by [24]. The slight differences observed in the contours of the charge density and temperature fields can again be attributed

to the fact that Luo et al. [24] did not provide the color bar in their manuscript. All the above observations further successfully
erify the currently developed methodology for simulating ETHD flows in enclosures.

6.3. Concentric ejecting spherical electrodes in an ohmic regime

As has already been stated, the current study is a first attempt to address fully 3𝐷 thermo-electro-convective flow developing
around an ejecting spherical electrode placed within a cubic enclosure filled with a dielectric liquid. Hence, there is no available
literature that can be straightforwardly used for verification of the currently developed methodology. Therefore, in order to verify the
developed solver we focus on the calculation of the charge density and potential distributions developing between two concentric
jecting spherical electrodes in an ohmic regime characterized by a low enough value of the electric Rayleigh number so that
lectro-convection is negligible. In this case we only solve the PNP Eqs. (17)–(18) by assuming zero velocity field. Following the

formalism of the IB method, the spherical electrodes are placed in the center of a cube of length 1, as shown in Fig. 4. The analysis
s performed for the whole 3𝐷 domain, although the domain of interest is restricted to the space confined by the two concentric
lectrodes. The values of the inner, 𝑅𝑖, and the outer, 𝑅𝑜, radiuses of the spherical electrodes are equal to 0.1 and 0.2, respectively:

𝑅 = 𝑟𝑖 ∶ 𝜙 = 1, 𝑞 = 2, 𝒖 = 0, (28a)
𝑅 = 𝑟𝑜 ∶ 𝜙 = 0, 𝑞 = 1, 𝒖 = 0. (28b)

The computational domain is discretized by using a uniform mesh, and the computations are carried out at 𝑀 = 49 and �̂� = 5 × 10−4,
a constant value of injection field 𝐶 = 10, and three different values of electric Rayleigh number 𝑇 = 10, 25 and 50. The properties
chosen correspond to silicone oil, used as a working liquid in many experimental studies [45,46]. The constant injection field
ensures strong injection and may be seen as a good approximation of the so-named Space-Charge-Limited (SCL) injection, which
can be experimentally achieved by covering the electrode with a membrane [47]. The chosen range of the electric Rayleigh number,
𝑇 , values ensures the existence of underlimiting charge transport for the given configuration.

For the above set of operation conditions, the current configuration is characterized by 1𝐷 variation (in the radial direction only)
of the charge density field. Therefore the performed verification procedure focuses on comparing the charge density distribution
obtained by the developed fully 3𝐷 solver incorporating the IB method and addressing Eqs. (14)–(18) for the iso-thermal flow with
he corresponding results independently obtained by us by utilizing the specifically written Matlab script. In this case we neglect all

the flow velocities and solve 1𝐷 PNP equations in spherical coordinates to obtain the distribution of potential and charge density
fields between the sphere surfaces:

𝜕
𝜕 𝑟 (𝑟

2 𝜕 𝜙
𝜕 𝑟 ) = −𝑟2𝐶 𝑞 , (29a)

𝜕
𝜕 𝑟 (𝑟

2 𝜕 𝑞
𝜕 𝑟 ) = 𝑟2 𝑇

𝑀2

[

𝐶 𝑞2 − 𝜕 𝜙
𝜕 𝑟

𝜕 𝑞
𝜕 𝑟

]

. (29b)

Boundary conditions for the electric potential and the charge density fields are chosen to be the same as for the fully 3𝐷
configuration (see Eqs. (28a) and (28b)). Since the system of Eqs. (29) is not linear, internal iterations are introduced to solve it
umerically. The system is solved in a segregated manner by first solving for the Poisson equation ((29)(a)) for the electric potential

field by taking the charge density field from the previous iteration. The calculated potential field is next plugged into the transport
equation ((29)(b)) in order to obtain the concentration field. The process is reiterated until convergence of both fields is achieved.
The discretization is carried with the second order finite difference method. Under-relaxation of both fields is employed to provide
a robust convergence of the iterations.

The contours of charge density distribution in a cross-section between the spheres, obtained by numerical solution of the fully
3𝐷 problem, are shown in Fig. 5 for the value of 𝑇 = 50. As expected, the obtained distribution is 1𝐷 and varies only in a radial
irection. We certify that the maximal value of the flow velocity magnitude is below 10−4, which successfully verifies the assumption
8 
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Fig. 3. A comparison between the currently obtained charge density (left), temperature(mid) and streamline (right) distributions (the first and the third rows)
with the corresponding data reported in [24] (the second and the fourth rows). The results are obtained for the values of 𝑃 𝑟 = 10, 𝑀 = 10, �̂� = 2 × 10−4,
𝑅𝑎 = 105, and 𝐶 = 10. The figures (a, b) correspond to the value of 𝑇 = 150; the figures (c, d) correspond to the value of 𝑇 = 300.
Source: Reproduced with permission from K. Luo et al. heat transfer enhancement in electro thermo-convection in a square enclosure with an inner circular
cylinder, Int. J. Heat Mass Transfer 113, 1070–1085 (2017).
© 2017 Elsevier.
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Fig. 4. A schematic of two concentric spheres placed within a cubic enclosure: (a) a fully 3𝐷 domain addressed by the developed IB solver; (b) a mid cross-section
demonstrating the radial direction along which the problem is simulated by a specifically written Matlab script.

Fig. 5. Contours of charge density distribution between two concentric spheres.

of the negligible impact of electro-convection in the overall charge space transport for the given configuration. A comparison of the
charge density distribution obtained by the 3𝐷 code with the corresponding fields obtained by the solution of axisymmetric PNP
equations for different 𝑇 values is shown in Fig. 6. It can be seen that there is good agreement between both results, while for the
given configuration a grid independance between the 3𝐷 results is achieved for 3003 grids. Hence, all the simulations presented in
the framework of the current study were performed on 3003 grids.

7. Results and discussion

7.1. Electro-convection flows

Both steady and unsteady isothermal electro-convection regimes are investigated for the configuration consisting of charged
ejecting sphere placed in the center of a cubic enclosure (see Fig. 1 for details regarding the boundary conditions). All the
computations are carried out at 𝑃 𝑟 = 116.6, 𝑀 = 49 and �̂� = 5 × 10−4. Following the work of [47], the value of the injection
strength is chosen to be to equal 𝐶 = 10. The time steps lie in the range of 10−6 ≤ 𝛥𝑡 ≤ 10−4 and depend on the value of the electric
Rayleigh number 𝑇 . The vortical structures of electro-convection are visualized by utilizing the 𝜆2 criterion based on the second
largest eigenvalue 𝜆2 of the velocity gradient tensor, as discussed in [48]. Flow regions with negative values of 𝜆2 are characterized
by the presence of vortices. A value of 𝜆2 = −10 is chosen for the visualization of convection cells. The convergence criterion for the
steady state simulations performed in the current study is the value of 10−6 of the 𝐿2 norm calculated for the difference between
two consecutive time steps for all the flow fields. Unsteady simulations are continued until the maximum number of time steps is
reached.

Seven distinct test cases are chosen to simulate electro-convection problems over a range of electric Rayleigh numbers. The
steady state solutions is observed for the range of electric Rayleigh number 𝑇 ∈ [100 ÷ 800], while the values of 𝑇 lying in the range
of 𝑇 ∈ [800 ÷ 900] characterize the non-stationary flow regimes. The steady state flows is investigated in terms of the distribution of
10 
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Fig. 6. Comparison between the charge density distribution along the radial direction with analytical solution at : (a) 𝑇 = 10; (b) 𝑇 = 25; (c) 𝑇 = 50.

the charge density and path lines, projected on the cross-sectional and the main diagonal mid-planes, as well as by the iso-surfaces
of the 𝜆2 criterion. The charge density distributions shown in Fig. 7(a–c) are characterized by the mid cross-section symmetry, which
indicates that in the steady state regime there is no preferred direction in the ionic transport driven by the drift mechanism of the
electric field. It should be noted that for small values of the electric Rayleigh number, 100 ≤ 𝑇 ≤ 300, viscous force dominates the
Coulomb force governing electro-convection phenomena. As a result, the values of the velocity magnitude are low and convective
cells cannot be clearly recognized for this range of 𝑇 . The steady state flow obtained for 𝑇 = 700 preserves mid cross-sectional
symmetry and exhibits four pairs of counter-rotating vortices, as demonstrated in Fig. 7(d). It is characterized by four central regions
where close-to-zero values of 𝑞 are observed as a result of the local balance between the viscous and the electric forces typical of
these regions, see e.g. [49,50]. We also remark that Coulomb-driven flows have a characteristic feature of a charge void regime
when the Coulomb and viscous forces have a same order of magnitude. The qualitative trend of the charge void phenomenon is
also observed in the literature for simulating 2𝐷 symmetrically-placed electrodes in the domain.

We next investigate the regimes typical of higher electric Rayleigh numbers 𝑇 ≥ 700 for which the symmetry breaking
phenomenon of the electro-convective flow can be clearly recognized. Fig. 7(e) reveals the existence of thinner charge plumes,
which is a consequence of increased electric field acting throughout the domain. It is worth noting that for high 𝑇 values the ion
transport in the domain is primarily governed by the flow convection mechanism since the drift velocity of ions is smaller than
the flow velocity. This observation is clearly evident in Fig. 8 demonstrating the relationship between the maximum fluid velocity,
𝑉𝑚𝑎𝑥, and the electric Rayleigh number, 𝑇 . Hence, almost all ions tend to adhere to the regions characterized by the highest flow
velocity values. Fig. 8 reveals two regions distinguishing between the charge density transport regimes with respect to the value of
𝑇 . The first region observed between 200 < 𝑇 < 300 corresponds to a charge void regime, while the second region, typical of the
range of 800 < 𝑇 < 900, corresponds to an unsteady regime of the electro-convective flow. As can be clearly recognized from Fig. 8
the maximum velocity value is not zero for the entire range of 𝑇 values — it is weak for 200 < 𝑇 < 300, gradually increasing with
increasing 𝑇 values. It is noteworthy that the behavior is different to that typical of configurations hosting symmetrically placed
electrodes, which exhibit a sharp transition between entirely static and dynamic flow regimes.

7.2. Electro-thermo-convection flows

We next focus on an investigation of electro-thermo-convection flow for which the surface of a sphere placed in the center of a
cold cubic enclosure is kept at hot constant temperature 𝜃ℎ = 1 while all the walls of the cubic enclosure are held at cold constant
temperature 𝜃𝑐 = 0. The analysis requires solving the energy equation in addition to the Poisson–Nernst–Planck system addressed
in the previous section. The computational domain, boundary conditions and operating parameters are the same as in the previous
section. The electro-thermo-convection is simulated for a Rayleigh number equal to 𝑅𝑎 = 105. A series of numerical simulations
11 
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Fig. 7. (a–c) Distributions of charge density in a mid cross-section obtained for pseudo conduction regime. (d–e) Distribution of charge density in a mid
cross-section (left); projection of path lines distribution onto main diagonal section (middle); iso-surfaces of 𝜆2 = −10 (right) obtained for electro-convection
regime. The color palette consists of 10 evenly distributed contours with red color corresponding to 𝑞 = 1 and blue color corresponding to 𝑞 = 0 values.

are performed for a wide range of electric Rayleigh numbers 0 ≤ 𝑇 ≤ 1300. The obtained results reveal that the above range can
be split into two sub-ranges: the first region 0 ≤ 𝑇 ≤ 600 characterizes the steady state (see Fig. 9), and the second region (see
Fig. 10) characterizes the unsteady flow regimes, so that the transition between the steady and transient flow regimes sets in at
600 < 𝑇 < 700. It can be seen that the distributions of electric charge density and temperature fields of the steady state flow
preserve mid plane cross-sectional symmetry with respect to both the 𝑍 − 𝑌 and the 𝑍 − 𝑋 mid planes, and also with respect to
the main diagonal plane (see Fig. 9). At higher values of the electric Rayleigh number, 𝑇 , the symmetry breaking phenomenon
can be clearly recognized both in the electric charge density and temperature distributions (see Fig. 10). It is also notable that
up to 0 ≤ 𝑇 ≤ 500 the buoyancy force still dominates over the electro driven forces, so that only a single thermal plume exists
with a clearly recognized direction from the surface of the hot sphere to the top lid of the cubic enclosure. The bottom part of
the enclosure remains cold and practically no mixing is observed there between the hot and the cold fluids in this region. Further
increase of the 𝑇 value results in an increasing impact of the EDL forces, which for 𝑇 = 600 leads to penetration of the warm fluid
into the bottom part of the cubic enclosure. This phenomenon is exhibited by the formation of a secondary thermal plume in the
opposite direction to the gravity force (i.e. from the cylinder surface towards the bottom of the cubic enclosure), as demonstrated
in Fig. 9(g). Apparently, the penetration of the hot fluid into the bottom part of the enclosure that persists for the values of 600 < 𝑇
constitutes the primary source of instability leading to the symmetry breaking phenomenon and to the transition to unsteadiness.
In order to gain more insight into the flow characteristics of the considered electro-thermo-convection flow we next focus on its
12 
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Fig. 8. Dependance of the maximal velocity value, 𝑉𝑚𝑎𝑥, on the electric Rayleigh number value, 𝑇 , for pure electro-convection.

vortical structure for the entire range of 0 ≤ 𝑇 ≤ 1300 values. The vortical structure of electro-thermo-convection exhibits a variety
of different scenarios with respect to different values of the electric Rayleigh number, as depicted in Fig. 11 and Fig. 12 for the
steady and the transient flows, respectively. As has already been mentioned, for close-to-zero values of 𝑇 the effects of electric field
forces on the fluid are negligible, leading to a pure thermal convection regime (see Figs. 11(a)–(b)) as is also supported by looking
at the corresponding vortical structures exhibiting mushroom-shaped vortical patterns typical of natural convection flows. As the
electric Rayleigh number is increased to 𝑇 = 200, the electric force becomes strong enough to induce the formation of two additional
convective cells, whose size tends to grow with increasing 𝑇 up to 𝑇 = 500. Moreover above the value of 𝑇 = 300, the electric force
becomes strong enough to distort the mushroom-shaped vortical structure and to form convective cells of more complex shapes, as
shown in Figs. 11(d–g).

For 600 ≤ 𝑇 , the electric forces become strong enough to dominate the flow, leading to the formation of more than two additional
convection cells, as shown in Fig. 12. The newly formed cells can interact with each other and give rise to complex flow patterns,
such as secondary flows and instabilities, which can lead to asymmetries in the charge density and temperature distributions, as
well as in the vortical structure of the domain. At higher values of the electric Rayleigh number, the vortical structure of electro-
thermo-convection can become highly turbulent and include a wide range of scales, from large-scale rolls to small-scale eddies. In
this regime, the flow patterns can be highly irregular and difficult to predict, and may display features such as intermittent bursts
of activity, chaotic behavior, and the formation of localized regions with high vorticity and mixing. A thorough investigation of the
above flow features is out of the scope of the current study.

7.3. Enhancement of heat transfer

This section discusses the enhancement of heat transfer from the surface of a hot sphere by imposing the Coulomb force. The
heat transfer enhancement by electro-convection is analyzed in terms of the Nusselt number, 𝑁 𝑢, defined as the ratio of convective
to conductive heat fluxes. In the current study, we focus on the calculation of 𝑁 𝑢𝑐 and 𝑁 𝑢ℎ related to the surfaces of the cold cubic
enclosure and the hot sphere, respectively. The calculation of 𝑁 𝑢𝑐 is based on the arithmetic average of the Nusselt numbers at
every wall of the cube as:

𝑁 𝑢𝑐 = 1
𝑁

𝑁
∑

𝑖=1

𝜕 𝜃
𝜕𝒏
, (30)

where 𝜕 𝜃
𝜕𝒏 refers to the averaged temperature gradient on the surface of given faces of the cubic enclosure, and 𝑁 is the number of

thermally conducting faces. Calculation of 𝑁 𝑢ℎ, is obtained by accounting for the heat flux from the sphere surface:

𝑁 𝑢ℎ = 𝑃 𝑟𝛥𝑥𝑓𝜃 , (31)

where 𝑓𝜃 is the average heat flux obtained by an arithmetic mean of all the non-dimensional heat fluxes 𝑓𝐾𝜃 at each Lagrangian
point 𝑋𝑘 of the immersed surface. At steady state, the value of the total dimensionless heat flux entering into system from the sphere
should be the same as that leaving the cube. The total averaged flux is calculated by multiplying it by the total area of non-insulated
cube faces. For the steady state flow, the following condition should be satisfied:

4𝜋 𝑅2𝑁 𝑢ℎ = 6𝐻2𝑁 𝑢𝑐 . (32)

Note also that for the transient flow the values of 𝑁 𝑢𝑐 and 𝑁 𝑢ℎ should also be averaged over a long enough period of time. Fig. 13
depicts the dependence of the 𝑁 𝑢 number averaged over the surface of a sphere on the electric Rayleigh number, 𝑇 . As the Coulomb
𝑐
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Fig. 9. Distributions of charge density (left 3 columns ) and temperature (right three columns) in 𝑍 − 𝑌 , main diagonal, and 𝑍 −𝑋 cross-sections in transient
state. The color palette consists of 10 evenly distributed contours with red color corresponding to 𝑞 = 1, 𝜃 = 1 and blue color corresponding to 𝑞 = 0, 𝜃 = 0
values.

force becomes stronger (with an increase in 𝑇 ), the electric field induces a radial flow, resulting in an increase in convective heat
transfer. The results shown in Fig. 13 can be categorized into two flow regimes. For low 𝑇 values (ranging from 0 to approximately
250), the heat transfer is dominated by thermal convection, and therefore its variation with 𝑇 is weak. For higher 𝑇 values the slope
of the 𝑁 𝑢 − 𝑇 curve increases rapidly at about 𝑇 = 300 and remains approximately constant for higher 𝑇 values. Note that for the
maximal value of 𝑇 = 1300 the 𝑁 𝑢𝑐 value is higher by a factor of about 3 compared to the configuration characterized by 𝑇 = 0,
i.e. when heat transfer is solely driven by the natural convection and conduction. It is noteworthy that in the 3𝐷 case the dominance
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Fig. 10. Distributions of charge density (left 3 columns) and temperature (right three columns) in 𝑍 − 𝑌 , main diagonal, and 𝑍 −𝑋 cross-sections in transient
state. The color palette consists of 10 evenly distributed contours with red color corresponding to 𝑞 = 1, 𝜃 = 1 and blue color corresponding to 𝑞 = 0, 𝜃 = 0
values.

of electro driven forces over the free convective one is less pronounced compared to its 2𝐷 counterpart. In fact, with the comparison
to the previously reported results related to the natural and electro-convection flows developing in a 2𝐷 cold square enclosure with
a hot circular cylinder placed at its center [51] reveals that about a three fold increase in the 𝑁 𝑢 number is already achieved at
𝑇 = 800. For the 2𝐷 counterpart the length of the enclosure side and the diameter of the cylinder are as those used in the current
study. The observed difference can be explained by the fact that the 2𝐷 flow is characterized by a critical threshold value of 𝑇 above
which electro-convection solely controls the flow structure, and the impact of the buoyancy forces becomes negligible. However,
15 
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Fig. 11. Vortical structure visualized by the iso-surfaces of 𝜆2 = −10 obtained for 𝑅𝑎 = 105 and the range of 0 ≤ 𝑇 ≤ 600. The figures correspond (from left to
right) to the 𝜆2 iso-surfaces taken in 𝑍 − 𝑌 , 𝑍 −𝑋, 𝑋 − 𝑌 and isometric views and the path lines projected onto the main diagonal plane, respectively.

in the currently investigated fully 3𝐷 configuration, full dominance of electro-convection is not achieved even at very high (up to
1300) values of 𝑇 .

8. Conclusions

The current study focusses on the extension of a direct forcing IB method for the simulation of 3𝐷 electrically driven flows
developing around bodies of complex geometry. The developed method has been verified by comparison of the obtained results with
data independently obtained for the solution of 1𝐷 Nernst–Planck equations in radial coordinates in the domain confined by two
16 
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Fig. 12. Vortical structure visualized by the iso-surfaces of 𝜆2 = −10 obtained for 𝑅𝑎 = 105 and the range of 700 ≤ 𝑇 ≤ 1300. The figures correspond (from left
to right) to the 𝜆2 iso-surfaces taken in 𝑍 − 𝑌 , 𝑍 −𝑋, 𝑋 − 𝑌 and isometric views and the path lines projected onto the main diagonal plane, respectively.

concentric ejecting electrodes of spherical shape. The currently developed framework has been verified for its capability to accurately
simulate electro-thermo-convection flows. The pseudo-time technique embedded within the direct tensor product factorization (TPF)
based solver [38] is employed for the solution of the stationary Poisson equation to meet limitations of memory consumption. This
enabled reducing the RAM consumption by nearly 20 times compared to the analogous solution of the purely stationary Poisson
equation.

The characteristics of fully 3𝐷 electro-thermo-convective flow developing around an ejecting hot spherical electrode placed at
the center of a cold cubic enclosure are thoroughly investigated. The study confirmed the potential of electro-thermo-convective heat
transfer in 3𝐷 for achieving considerable (about three fold) enhancement in the heat removal rate from the surface of a hot sphere
17 



M. Kumar et al. Case Studies in Thermal Engineering 64 (2024) 105438 
Fig. 13. The dependence of 𝑁 𝑢𝑐 on electric Rayleigh number 𝑇 .

compared to the configuration characterized by solely natural convection heat transfer. The differences between steady state and
transient characteristics of the considered electro-thermo-convective flow were investigated both qualitatively and quantitatively.
The range of the electric Rayleigh number, 𝑇 , values at which the steady-unsteady transition sets in is determined. Finally, it is
revealed that the heat removal characteristics of the considered 3𝐷 configuration are similar to its corresponding 2𝐷 counterpart,
albeit in 3𝐷 no critical threshold value of 𝑇 for the full dominance of electro-convection over natural convection heat transfer has
been distinguished.

The current work has been restricted to the investigation of influence of only the electric Rayleigh number, 𝑇 , on the flow and
heat transfer characteristics of the considered flow. A natural continuation of the current study would be to conduct an extensive
parametric study of the influence of the mobility number, 𝑀 , and the injection number, 𝐶, on the Nusselt number, which could
help in building a comprehensive roadmap allowing further optimization of heat removal from hot ejecting electrodes immersed in
a dielectric liquid, and will be the topic of our future work.
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