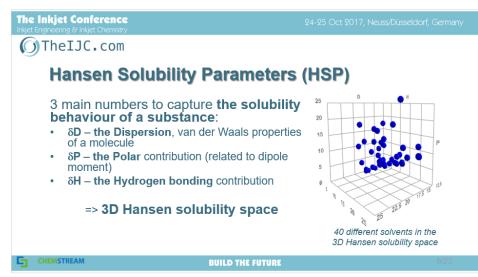
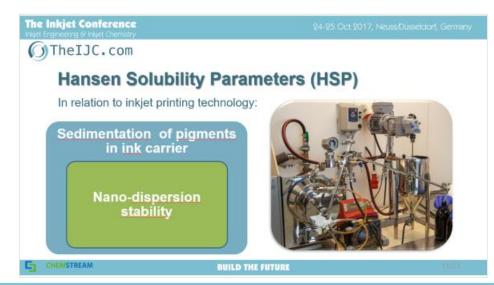


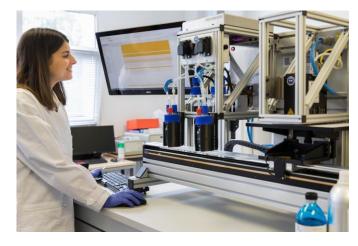
The use of Hansen Solubility Parameters (HSP) in the development of inkjet inks

Els Mannekens




The Inkjet Conference

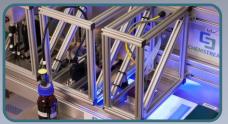
Inkjet Engineering & Inkjet Chemistry

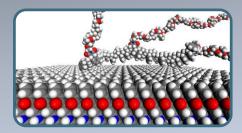

Chemstream: The Chemical R&D Company

Profile

- ➤ Founded in April 2010
- > Staff profile: 9 PhD's
 - Chemistry
 - Material Science
 - Bio Engineer
- Located near Antwerp Belgium
- Lab-facilities (500 m2)
 - Organic Synthesis
 - Chemical Formulation
 - Characterization

Inkjet Engineering & Inkjet Chemistry




Chemstream: The Chemical R&D Company

Mission

To translate customer requirements into chemical formulations with dedicated functionalities, from **design to prototyping and implementation**

Organic Synthesis

- * Crystal, colorant and dispersant design
 - * Photochemistry
- * Interfacial chemistry, wetting and adhesion
 - * Superabsorbing polymers

Technology

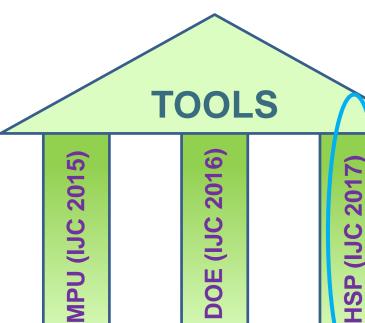
- * Dispersion technology
- Coating, printing, jetting (Modular printing unit MPU)
- * Radiation curing (UV, UV-LED, e-Beam)
- *Atmospheric plasma

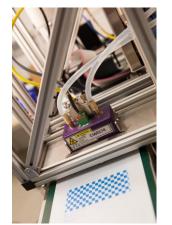
Methodology

- * Molecular Modeling
- * Design of Experiment (D.O.E.)
 - * High throughput screeining
 - * Hansen solubility parameters (HSP)

Analytical and physical chemical tools

- * UVVIS, FTIR, GCMS, LCMS, GPC
- * Particle size distribution (PSD)
- * Contact angle, surface tension, Viscosity



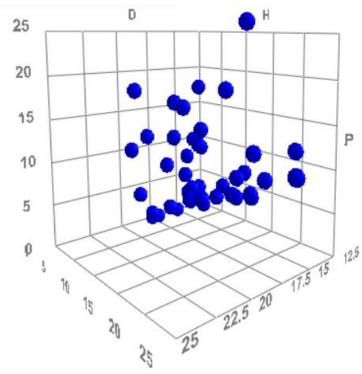

Ink development is a Dynamic Collaboration between R&D and Technology

Ink design (R&D)

Mechanical properties
Process characteristics
Colour (pigment / dye)
Hydrophobicity
Rheology
Legislation

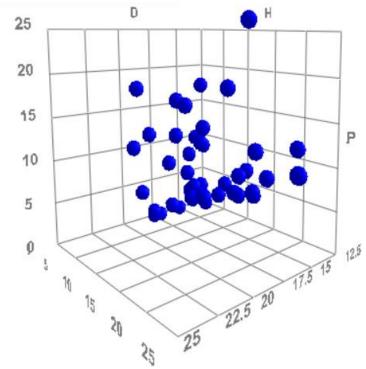
Technology

Type of printhead
Resolution printhead
Printing speed
Belt speed
Curing method

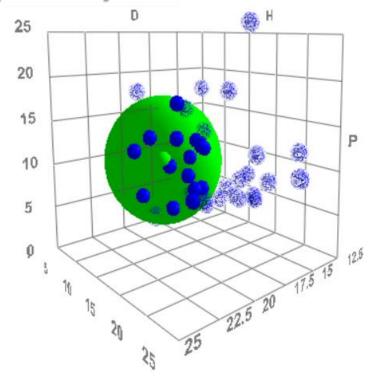


3 main numbers to capture the solubility behaviour of a substance:

- δD the Dispersion, van der Waals properties of a molecule
- δP the Polar contribution (related to dipole moment)
- δH the Hydrogen bonding contribution

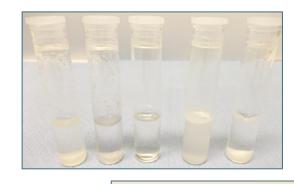

=> 3D Hansen solubility space

40 different solvents in the 3D Hansen solubility space


• The closer the position of compounds in the 3D solubility space, the more 'alike' they are.

40 different solvents in the 3D Hansen solubility space

- The closer the position of compounds in the 3D solubility space, the more 'alike' they are.
- Each molecule can be checked for its 'compatibility' using a selected set of solvents and obtains its own **solubility sphere**.
- The radius of the HSP sphere is a measure of its 'solubility' within the 3D solubility space.



The Hansen solubility sphere of 1 molecule in the 3D Hansen solubility space

'Compatibility' or 'Solubility' are broad terms:

- Dissolving (of a powder/drug/compound in solvents)
- Miscibility (of solvents)
- Sedimentation (of a solid/pigment in solvents)
- **Diffusion/permeability** (of solvents through a polymer film, skin,...)
- Swelling (of polymers in solvents)
- Attack of a surface by solvents
- •

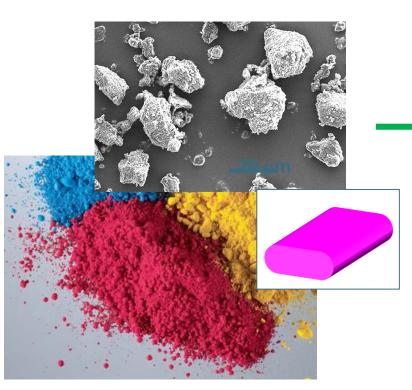
In relation to inkjet printing technology:

Sedimentation of pigments in ink carrier

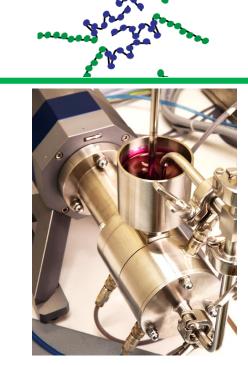
Nano-dispersion stability

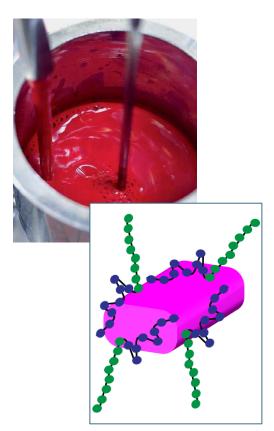
Swelling/attack of polymers in ink carrier

Material compatibility


In relation to inkjet printing technology:

Sedimentation of pigments in ink carrier


Nano-dispersion stability

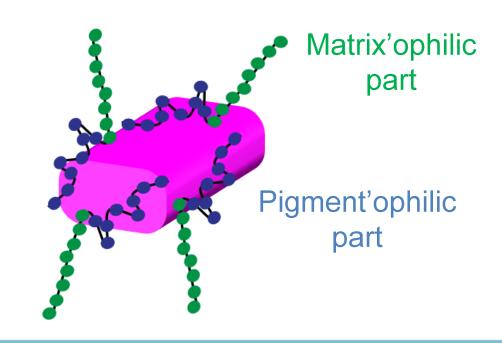


Agglomerated pigment particles

Milling in ink carrier

Stabilized pigment nano-dispersion

The surface of the pigment should be available for interaction with the pigment'ophilic part of the dispersing agent (anchoring).

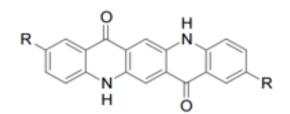

FOR EXAMPLE:

UV-curable pigmented nano-dispersions

Matrix = UV-curable monomer

Pigment surface = more polar character

Steric stabilization


Commercial pigments = very diverse!

- different work-up processes after production
- different surface modifications of the pigments
- => Different surfaces for the same pigment types! But: mostly, the details are not known.

FOR EXAMPLE:

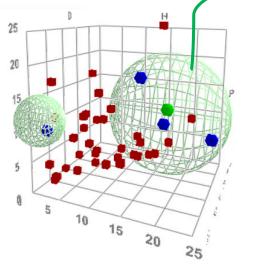
Mixed crystal Magenta 'PV19/PR202'

- Quality A
- Quality B
- Quality C

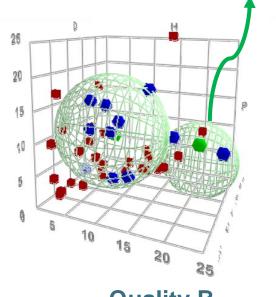
PV19 R = H PR202 R = CI

Studied with Hansen solubility parameters (HSP)

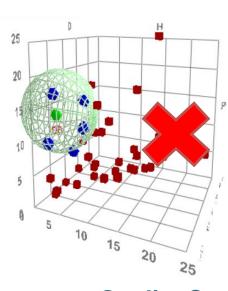
Hansen solubility Parameters (HSP) study: Mixed crystal Magenta 'PV19/PR202'


PR202 R = CI

Sedimentation of pigments in a set of 42 solvents was checked

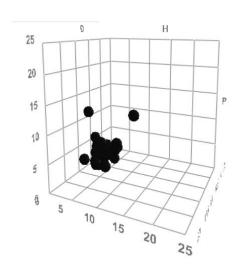

=> Solubility sphere(s) of each pigment quality

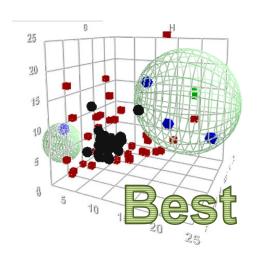
=> Information about the pigment surface characteristics

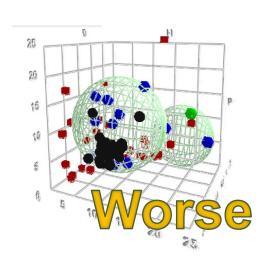


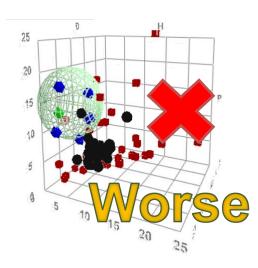
H-bonding

Quality B




Quality C

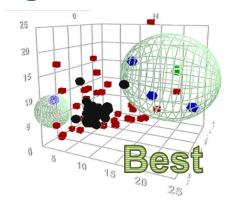


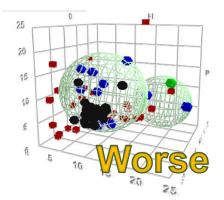

Hansen solubility Parameters (HSP) study: Mixed crystal Magenta 'PV19/PR202'

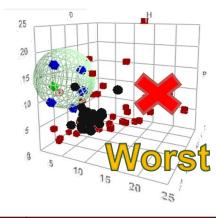
Solubility sphere(s) of each pigment quality compared with the position of UV-curable monomers (= classic UV curable ink carrier) in the 3D solubility space

Quality A

Quality B


Quality C




R H N R

PV19 R = H PR202 R = CI

Hansen solubility Parameters (HSP) study: Mixed crystal Magenta PV19/PR202

In Practice:

	Dispersions (10% pigment)	CSD01052	CSD01147	CSD001153	
	pigment	Quality A	Quality B	Quality C	
	physical appearance	liquid	liquid	thick paste	
viscosity after					
filtration	mPa.s @ 25°C	84	105	unable to filter	
viscosity after 7d 60°C	mPa.s @ 25°C	86	130	n.d.	
viscosity in ink	fresh (mPa.s @ 25°C)	15,7	26,4	n.d.	
simulation	after stability test	17,6	62	n.d.	
(5% pigment)	% rise in visco	12	135	n.d.	

In relation to inkjet printing technology:

Sedimentation of pigments in ink carrier

Nano-dispersion stability

Swelling/attack of polymers in ink carrier

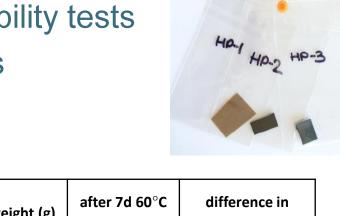
Material compatibility

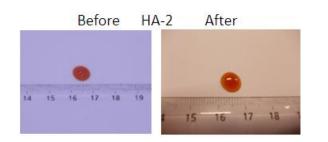
In relation to inkjet printing technology:

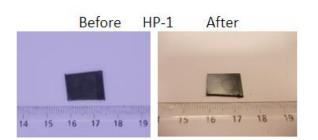
Swelling/attack of polymers in ink carrier

Material compatibility

Can all materials (printhead, nozzle plate, tubings, etc.) withstand the jetting fluids?


KM1024 compatibility set

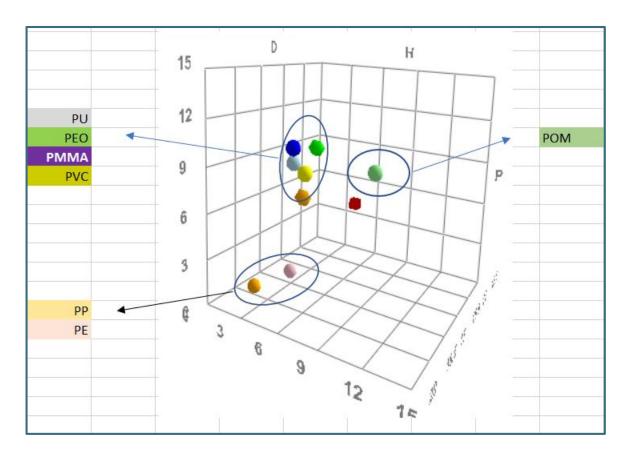



Material compatibility

Most printhead manufacturers foresee material compatibility tests

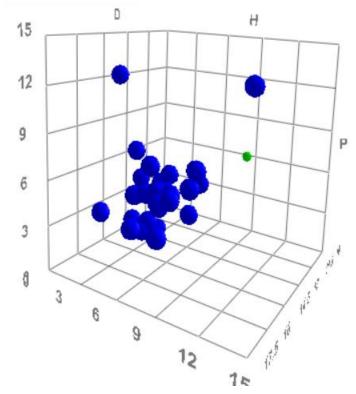
- ⇒ 'material compatibility kits' + detailed test procedures
 - They contain some parts of printheads to test in the ink carrier
 - Size and weight are measured before and after soaking

Printhead test SET KM1024	weight (g)	after 7d 60°C in ink carrier	difference in weight (%)	
HA-1 Adhesive	0,0978	0,10846	10,9	
HA-2 Adhesive	0,10999	0,1117	1,6	
HA-3 Adhesive	0,09554	0,10565	10,6	
HP-1 Nozzle Plate	0,01918	0,01905	-0,7	
HP-2 Head Cover	0,31924	0,32026	0,3	
HP-3 Manifold	0,30526	0,30545	0,1	


If one knows the nature of those materials => HSP study can help upfront

Hansen solubility Parameters (HSP) study:

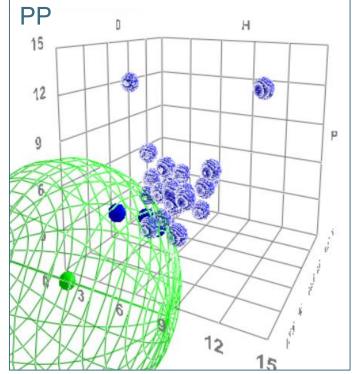
Selection of polymers

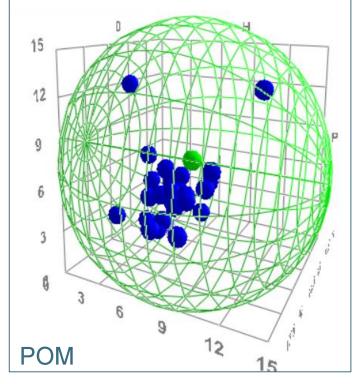

Polymer	dD ▼	dP ▼	dH
Polypropylene (PP)	18	0	1
Polyethylene (PE)	16,9	0,8	2,8
Polyurethane (PU)	18,1	9,3	4,5
Polyethylene oxide (PEO, PEG)	17	10	5
Polymethylmethacrylate (PMMA)	18,6	10,5	5,1
Polyvinylchloride (PVC)	18,8	9,2	6,3
Polyoxymethylene (POM)	17,2	9,2	9,8

Hansen solubility Parameters (HSP) study:

Selection of 29 commonly used UV-curable monomers

29 different UV-curable monomers in the 3D Hansen solubility space


Hansen solubility Parameters (HSP) study:


PP and POM in UV curable monomers

Polymer	dD	•	dP	•	dH	†
Polypropylene (PP)		18		0		1
Polyoxymethylene (POM)		17,2		9,2		9,8

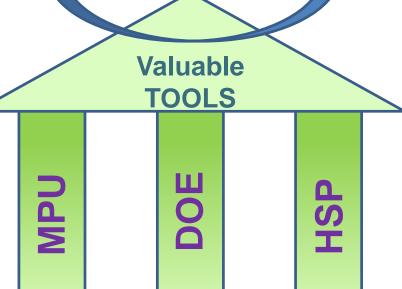
PP: very little overlap => very resistant to UV-curable monomers in general

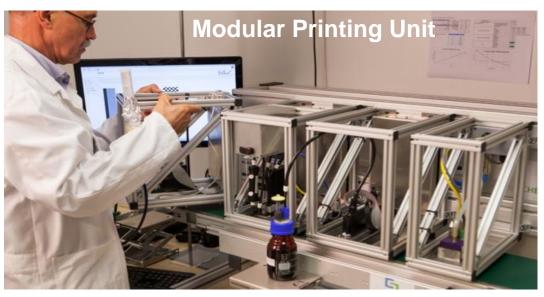
POM: all UV-curable monomers fall into its solubility sphere => not resistant!

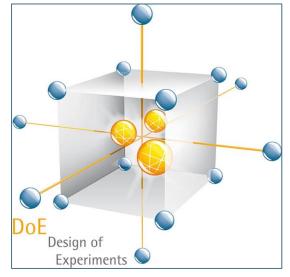
Hansen solubility Parameters (HSP) study:

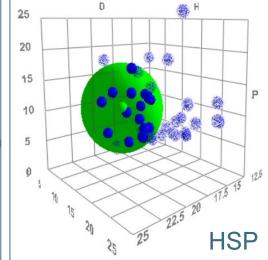
Similar studies can be done for

- Tubings
- Ink bottles (packaging)
- Ink cartridges
- Etc.




Conclusion


Ink Design


CHEMSTREAM

Inkjet inks that fulfill customer requirements

Inkjet Engineering & Inkjet Chemistry

Thanks for listening

You are invited at our booth for further information and discussions:

- ➤ Veerle Goossens
- >Els Mannekens
- ➤ Frank De Voeght

More info on our website: www.chemstream.be

