

19 Hartom St., Har Hotzvim Jerusalem 9777518 P.O.B 45003 Jerusalem 9145001 ISRAEL PHONE: 972-2-6781861 FAX: 972-2-6781852 e-mail: info@novamed.co.il



# DIPSTREAK <sup>®</sup> Urine Culture Device C.L.E.D. agar/MacConkey agar (Cat.No.BD-914)

## **POSITIONING & STRATEGY**

DIPSTREAK<sup>®</sup> Urine Culture Device (UCD) Cat.No.BD-914 is your superior device designed to be one step ahead of all urine culturing devices. DIPSTREAK<sup>®</sup> UCD (Cat.No.BD-914) is the advanced format of the previous model (Cat.No.BD-510) providing increase in the work surfaces of agars at 60 %. The advanced model of DIPSTREAK<sup>®</sup> UCD (Cat.No.BD-914) emphasizes all advantages of a product.

The unique dip-tip technique differentiates DIPSTREAK® UCD from all other commercial dipslides enabling dilution streaking similar to culture. DIPSTREAK® UCD combines the sensitivity & specificity of the traditional Petri dish culture media, with the convenience of dipslide, which together with special unique features makes it the leading device for UTI testing! The simple and rapid protocol together with the see-through view results in a unique transport packaging position DIPSTREAK® UCD as a premium high quality price product, providing easy to use friendly standardized culture process from the bedside or doctor's office up to the clinical microbiological laboratory.

## INTENDÉD USE

DIPSTREAK<sup>®</sup> UCD is a convenient semi-quantitative screening culture device for inoculating and transporting urine samples as well as for detecting, enumerating and identifying specific bacteria in urine.<sup>1, 2</sup> A unique streaking mechanism permits the isolation of single colonies even when the original bacterial population of the sample was as high as 10<sup>7</sup> organisms per milliliter. The device is intended for use in physician's office laboratories and clinical laboratories as an aid in the diagnosis of urinary tract infection (UTI).

### SUMMARY AND EXPLANATION

DIPSTREAK<sup>®</sup> UCD comprises a plastic paddle with two types of agar attached back-to-back, housed in a closed transparent plastic tube. A ring with elongated prongs is attached to the end of the paddle so that there are prongs on each side of the slide. The ends of the prongs are dipped into the urine sample. Upon re-insertion into the plastic tube, the prongs are prevented from moving and the agar surfaces are inoculated with the urine sample as the paddle passes over the prongs. The result is a series of streaks of decreasing bacterial concentration, which permits isolation of single colonies even when the original bacterial population of the sample was as high as 10<sup>7</sup> organisms per milliliter. Current routine methods for bacteriological examination of urine are the classic Petri dish culture method <sup>5</sup> and the dipslide techniques.<sup>6</sup> DIPSTREAK<sup>®</sup> UCD combines the advantages of both techniques, enabling bacterial enumeration and isolation following a simple, user-friendly procedure.

A selective medium, giving an excellent differentiation between coliforms and non-lactose fermenters with inhibition of Gram-positive cocci.<sup>4</sup> Most urinary tract pathogens grow on the medium, whereas most contaminants are inhibited.

### SPECIMEN COLLECTION

Cleanse the genital area and collect a midstream urine specimen in a clean container. Inoculate the urine as soon as possible following collection. If storage of the urine specimen is necessary, maintain the specimen at 4°C in a closed sterile container. Storage time should not exceed two hours.

# PRINCIPLES OF THE PROCEDURE

The ends of the prongs are dipped into the urine specimen and take up a standard volume of urine (approximately  $6\mu$ ). Upon re-insertion into the plastic tube, the prongs are prevented from moving and both agar surfaces are simultaneously inoculated with the urine sample by a streaking dilution as the paddle passes over the prongs. As a consequence, the number of bacteria deposited on the media is in direct proportion to the number of bacteria present in the specimen.<sup>10</sup> Following incubation, the number of bacterial colonies is compared with the Colony Density Chart to determine the colony forming units per ml (CFU/ml) of bacteria in the urine sample.

### **KIT CONTENTS**

DIPSTREAK® UCD (Cat.No.BD-914) contains two types of media: CLED and MacConkey agar.

**CLED's** electrolyte deficiency inhibits swarming of Proteus which otherwise would obscure the observation of colonies. Lactose is included in the agar to detect lactose fermenting coliform contaminants which are easily recognized by the green to yellow color change of the agar.

**MACCONKEY** agar is a selective and differential medium giving an excellent differentiation between coliforms and non-lactose fermenters with inhibition of Gram-positive cocci<sup>9</sup>. Most urinary tract pathogens grow on the medium, whereas most contaminants are inhibited. The concentration of bile salts in this medium is relatively low in comparison with other enteric plating medium; therefore, selectivity for gram-negative bacteria is not as great as in some other formulations. Crystal violet inhibits gram-positive microorganisms, especially enterococci and staphylococci. Differentiation of enteric microorganisms is achieved by the combination of lactose and the neutral red indicator. Colorless or pink to red colonies are produced depending upon the ability of the isolate to ferment lactose.

# MATERIAL REQUIRED BUT NOT PROVIDED

Incubator (35 ± 2°C)

# Incubation Stand

# PRECAUTIONS

- 1. For In Vitro Diagnostic Use.
- 2. Use aseptic technique and established laboratory procedure in handling and disposing of infectious material.
- Dispose of used DIPSTREAK<sup>®</sup> UCD (Cat.No.BD-914) and tubes by burning, autoclaving or immersing in a suitable disinfectant overnight.
- 4. Incubation in a CO<sub>2</sub> enriched atmosphere will cause inhibition of staphylococcal growth.<sup>11</sup>

## STORAGE

1. Store DIPSTREAK <sup>®</sup> UCD (Cat.No.BD-914) at 15-25°C for 6 months. Protect from direct light to ensure product stability through the expiration date. Expiration date is indicated on the cap of device and on the label of package.

# **EXPIRATION DATE**

- 1. The expiration date applies to the product in its intact container when stored as directed.
- 2. Do not use DIPSTREAK<sup>®</sup> UCD exhibiting any of the following characteristics: discoloration, dehydration, wrinkling or shrinkage of an agar surface; microbial growth before inoculation; or an atypical cultural response in Quality Control procedures.

## PROCEDURE

- 1. Stand the DIPSTREAK<sup>®</sup> UCD tube firmly on a table. Unscrew the cap. Pull the paddle out. Do not touch any part <u>but</u> the cap (Fig. 1).
- 2. Hold the paddle vertically and dip the white prongs into the sample up to about half of their length (see below (Fig. 2).
- 3. Center the prongs over the opening of the tube (Fig. 3).
- 4. Press the paddle into the tube in a quick, vertical and continuous motion and close the cap (Fig. 4).





- 5. Label the inoculated DIPSTREAK® UCD with patient ID. Transport to laboratory for incubation and examination.
- 6. Incubate the entire container in a vertical position at 35-37°C for 18-24 hours using aerobic conditions. Before incubation, loosen cap one-half turn. **DO NOT INCUBATE IN CO<sub>2</sub>!**
- 7. Determine the number of colony forming units by comparison of the growth pattern on CLED side to the Colony Density Chart.

### **READING THE RESULTS**

Remove the paddle from the tube. Observe the bacterial growth on both agars.

Following incubation, examine DIPSTREAK® UCD for bacterial growth, which may be evidenced by visible colonies on the CLED agar surface. Colony growth on the DIPSTREAK® UCD is in discrete lines with isolated

colonies from samples with as many as 10<sup>7</sup> organisms per milliliter. The same sample yields an undifferentiated pattern of confluent growth on an old-style dipslide. Since each colony results from growth of a single bacterial cell, and since the sampler takes up a standard volume of urine, the number of colonies indicates the 'colony count" of the specimen, the approximate number of bacteria per ml (CFU/ml) of urine. If microbial growth is present, match the colony density on the agar surface with the printed illustration it most closely resembles on the Colony Density Chart (See below). DIPSTREAK <sup>®</sup> UCD (Cat.No.BD-914) is capable of detecting bacteria in urine at concentrations as low as 1000 CFU/ml. The colony density chart allows the reporting of colony counts to the nearest power of 10.

#### INTERPRETATION OF RESULTS

As a rule, for clean catch urine cultures, tests yielding  $\geq 10^5$  CFU/ml are regarded as positive (significant level of organisms),  $\leq 10^4$  CFU/ml as negative, and between  $10^4$  and  $10^5$  CFU/ml as borderline, which calls for a repeat assessment. Symptomatic patients having colony counts less than  $10^5$  CFU/ml require evaluation based on clinical information. The bacterial growth may consist of very small or very large colonies. It is important to remember that only the number of colonies, and not their size, should be taken into account when comparing DIPSTREAK (CHROMOSTREAK) <sup>®</sup> UCD to the Colony Density Chart.

Mixed bacterial growth, which means that different types of colonies are present, is usually caused by contamination of the specimen. Many factors, such as use of antimicrobial therapy, time of urine incubation in the bladder (e.g., first voided urine), and proper specimen collection, may influence the colony count obtained. In all cases, the physician must be the final judge of the proper interpretation of DIPSTREAK® UCD test results.

If bacterial growth yields three or more different kinds of colonies, this is most likely due to contamination. The test should be repeated. Preliminary identification of the bacteria can be made based on type and color of colonies. For example:

| Organism       | CLED                  | MacConkey |
|----------------|-----------------------|-----------|
| E. coli        | Yellow, darker center | Pink red  |
| K. pneumoniae  | Mucoid yellow         | Pink red  |
| P. aeruginosa  | Matte green-blue      | Colorless |
| P. vulgaris    | Clear green-blue      | Colorless |
| S. aureus      | Deep yellow           | No growth |
| S. epidermidis | White or pale yellow  | No growth |
| E. faecalis    | Yellow                | No growth |







## LIMITATIONS OF THE PROCEDURE

- 1. DIPSTREAK<sup>®</sup> UCD is a presumptive screening test. If the physician concludes that it is clinically indicated, full biochemical identification of the causative agent(s) and antimicrobial susceptibility testing should be performed.
- DIPSTREAK 
   <sup>®</sup> UCD is capable of detecting bacteria concentrations as low as 1000 CFU/ml of urine. The Colony Density Chart allows the reporting of colony counts to the nearest power of 10. When used as directed, an overall correlation of 95% is obtained when DIPSTREAK<sup>®</sup> UCD colony count results are compared to conventional agar plating methods.
- 3. If bacterial growth is mixed, repeat the test since this is most likely due to contamination.
- 4. Infants and certain patients may have true infection even if the bacterial count is less than 10<sup>5</sup> CFU/ml. Final interpretation of such results should be evaluated based on clinical information. Protocols for individual laboratory results must be established based on close cooperation between the medical and laboratory staff. The guidelines are based on the principle that four factors (number of isolates, density of isolates, type of specimen, and clinical information) must be considered to assess the significance of an isolate. Clinical information may alter the physician's final interpretation of culture results.
- If bacterial content in a urine specimen is above 10<sup>7</sup> CFU/ml, no single colony can be isolated because of confluent growth, even in the "isolation track". A standard quantitative urine culture should be performed.

### **BIBLIOGRAPHY**

- 1. Yagupsky P., M.Rider, N.Peled. 2000. Clinical Evaluation of Novel Chromogenic Agar Dipslide for Diagnosis Urinary Tract Infections. Eur J Clin Microbiol Infect Dis, 19: 694-698.
- Scarparo C., P.Piccoli, P.Ricardi and M.Scaguelli. 2002. Evaluation of DipStreak a New Device an Original Streaking Mechanism, for Detection and Presumptive Identification of Urinary Tract Pathogens in the Routine Work of the Clinical Microbiology Laboratory. J of Clin Microiol., June, p.2169-2178.
- 3. The Oxoid Manual, 7th Edition. 1995. Oxoid Unipath, Basingstoke, England. 2-75: 2-76
- 4. The Oxoid Manual, 7th Edition. 1995. Oxoid Unipath, Basingstoke, England. 2-144:2-145.
- 5. Degre, M. 1970. Quantitative and semiquantitative methods for detection of bacteriuria. Translated from Tidsskrift for Den norske laegeforening 90: 27-30.
- 6. McAllister, T.A. 1973. The day of the Dipslide. Nephron 11:123-133.
- 7. Mackey, J.P. and G.H. Sandys. 1965. Laboratory diagnosis of infections of the urinary tract in general practice by means of a dip-inoculum transport medium. British Medical Journal. 2:1286-1288.
- 8. Kass, E.H. 1957. Bacteriuria and the diagnosis of infections of the urinary tract. Arch. Int. Med. 100:709-714.
- Berger, S.A., B. Bogokowsky, and C. Block. 1990. Rapid screening of urine for bacteria and cells by using a catalase reagent. J. Clin. Micro. 28:1066-1067.
- Clarridge, J.E., M.T. Pezzlo, and K.L. Vosti. 1987. Laboratory diagnosis of urinary tract infections. In Cumitech 2A. American Society for Microbiology, Washington D.C.
- 11. Isenberg, H.D. and R.F. D'Amaato. 1985. Indigenous and pathogenic microorganisms of humans, p. 30-31. In E.H. Lennette, A. Ballows, W.J. Hausler, Jr., and H.J. Shadomy, Manual of Clinical Microbiology, Washington, D.C.